Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Public Health ; 24(1): 221, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238731

RESUMO

BACKGROUND: Inflammation exerts a critical role in the pathogenesis of infertility. The relationship between inflammatory parameters from peripheral blood and infertility remains unclear. Aim of this study was to investigate the association between inflammatory markers and infertility among women of reproductive age in the United States. METHODS: Women aged 20-45 were included from the National Health and Nutrition Examination Survey (NHANES) 2013-2020 for the present cross-sectional study. Data of reproductive status was collected from the Reproductive Health Questionnaire. Six inflammatory markers, systemic immune inflammation index (SII), lymphocyte count (LC), product of platelet and neutrophil count (PPN), platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR) and lymphocyte-monocyte ratio (LMR) were calculated from complete blood counts in mobile examination center. Survey-weighted multivariable logistic regression was employed to assess the association between inflammatory markers and infertility in four different models, then restricted cubic spline (RCS) plot was used to explore non-linearity association between inflammatory markers and infertility. Subgroup analyses were performed to further clarify effects of other covariates on association between inflammatory markers and infertility. RESULTS: A total of 3,105 women aged 20-45 was included in the final analysis, with 431 (13.88%) self-reported infertility. A negative association was found between log2-SII, log2-PLR and infertility, with an OR of 0.95 (95% CI: 0.78,1.15; p = 0.60), 0.80 (95% CI:0.60,1.05; p = 0.10), respectively. The results were similar in model 1, model 2, and model 3. Compared with the lowest quartile (Q1), the third quartile (Q3) of log2-SII was negatively correlation with infertility, with an OR (95% CI) of 0.56 (95% CI: 0.37,0.85; p = 0.01) in model 3. Similarly, the third quartile (Q3) of log2-PLR was negatively correlation with infertility, with an OR (95% CI) of 0.61 (95% CI: 0.43,0.88; p = 0.01) in model 3. No significant association was observed between log2-LC, log2-PPN, log2-NLR, log2-LMR and infertility in model 3. A similar U-shaped relationship between log2-SII and infertility was found (p for non-linear < 0.05). The results of subgroup analyses revealed that associations between the third quartile (Q3) of log2-SII, log2-PLR and infertility were nearly consistent. CONCLUSION: The findings showed that SII and PLR were negatively associated with infertility. Further studies are needed to explore their association better and the underlying mechanisms.


Assuntos
Infertilidade , Inflamação , Feminino , Humanos , Estudos Transversais , Infertilidade/epidemiologia , Inflamação/epidemiologia , Inquéritos Nutricionais , Estudos Retrospectivos , Adulto Jovem , Adulto , Pessoa de Meia-Idade
2.
Front Endocrinol (Lausanne) ; 15: 1368334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711980

RESUMO

Introduction: Studies have shown that the gut microbiota is associated with male infertility (MI). However, their causal relationship and potential mediators need more evidence to prove. We aimed to investigate the causal relationship between the gut microbiome and MI and the potential mediating role of inflammatory cytokines from a genetic perspective through a Mendelian randomization approach. Methods: This study used data from genome-wide association studies of gut microbes (Mibiogen, n = 18, 340), inflammatory cytokines (NFBC1966, FYPCRS, FINRISK 1997 and 2002, n=13, 365), and male infertility (Finngen, n=120, 706) to perform two-way Mendelian randomization (MR), mediated MR, and multivariate MR(MVMR) analyses. In this study, the inverse variance weighting method was used as the primary analysis method, and other methods were used as supplementary analysis methods. Results: In the present study, two gut microbes and two inflammatory cytokines were found to have a potential causal relationship with MI. Of the two gut microorganisms causally associated with male infertility, Anaerotruncus increased the risk of male infertility (odds ratio = 1.81, 95% confidence interval = 1.18-2.77, P = 0.0062), and Bacteroides decreased the risk of male infertility (odds ratio = 0.57, 95% confidence interval = 0.33-0.96, P = 0.0363). In addition, of the two inflammatory cytokines identified, hepatocyte growth factor(HGF) reduced the risk of male infertility (odds ratio = 0.50, 95% confidence interval = 0.35-0.71, P = 0.0001), Monocyte chemotactic protein 3 (MCP-3) increased the risk of male infertility (odds ratio = 1.28, 95% confidence interval = 1.03-1.61, P = 0.0039). Mediated MR analysis showed that HGF mediated the causal effect of Bacteroides on MI (mediated percentage 38.9%). Multivariate MR analyses suggest that HGF may be one of the pathways through which Bacteroides affects MI, with other unexplored pathways. Conclusion: The present study suggests a causal relationship between specific gut microbiota, inflammatory cytokines, and MI. In addition, HGF may mediate the relationship between Bacteroides and MI.


Assuntos
Citocinas , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Infertilidade Masculina , Análise da Randomização Mendeliana , Masculino , Humanos , Infertilidade Masculina/microbiologia , Infertilidade Masculina/genética , Citocinas/genética , Citocinas/metabolismo , Inflamação/microbiologia , Adulto , Polimorfismo de Nucleotídeo Único
3.
Front Pharmacol ; 15: 1442002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188956

RESUMO

Background: Low molecular weight heparin (LMWH) is extensively utilized as an anticoagulant for the prevention and management of various thrombotic conditions. However, despite the widespread use of LMWH in clinical indications, its adverse events (AEs) have not received substantial attention, and there is a lack of systematic and comprehensive AE studies. This study aims to evaluate AE signals associated with LMWH in the overall population and in pregnancy women from the FDA Adverse Event Reporting System database. Methods: We used the Standardized MedDRA Query to identify pregnancy-related AE reports. Disproportionality analyses were employed to identify LMWH-related AE by calculating the reporting odds ratios (ROR), proportional reporting ratios (PRR), bayesian confidence propagation neural network (BCPNN), and the empirical Bayesian geometric mean (EBGM). Results: For the overall population, the significantly reported adverse signals in SOCs were pregnancy, puerperium, and perinatal conditions, vascular disorders, blood and lymphatic system disorders, and product issues. The five strongest AEs signal of LMWH-related were anti factor X antibody positive (n = 6, ROR 506.70, PRR 506.65, IC 8.31, EBGM 317.03), heparin-induced thrombocytopenia test positive (n = 19, ROR 263.10, PRR 263.02, IC 7.65, EBGM 200.79), anti factor X activity increased (n = 10, ROR 255.93, PRR 255.89, IC 7.62, EBGM 196.61), heparin-induced thrombocytopenia test (n = 14, ROR 231.85, PRR 231.80, IC 7.51, EBGM 182.09), and spontaneous heparin-induced thrombocytopenia syndrome (n = 3, ROR 230.31, PRR 230.30, IC 7.50, EBGM 181.16). For pregnancy women, the five strongest AEs signals of LMWH-related included sternal fracture (n = 3, ROR 243.44, PRR 243.35, IC 6.61, EBGM 97.94), syringe issue (n = 12, ROR 97.49, PRR 97.34, IC 5.94, EBGM 61.21), bleeding time prolonged (n = 3, ROR 97.38, PRR 97.34, IC 5.94, EBGM 61.21), spinal compression fracture (n = 10, ROR 90.24, PRR 90.13, IC 5.87, EBGM 58.30), and injection site haematoma (n = 19, ROR 79.23, PRR 79.04, IC 5.74, EBGM 53.47). Additionally, unexpected AEs associated with LMWH in pregnancy women were observed, including premature baby death, placental necrosis, abortion, antiphospholipid syndrome, systolic dysfunction, compartment syndrome, body height decreased, rubella antibody positive, and ultrasound doppler abnormal. Conclusion: This study identified unexpected AE signals of LMWH-relate in pregnancy women. Our study could provide valuable evidence for the clinical practice of LMWH, especially for identifying AEs and ensuring safe usage in pregnancy women.

4.
Front Immunol ; 15: 1424648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136014

RESUMO

Background: Previous studies reported that endometriosis may have a higher risk of arthritis. However, it remains unclear whether the association between endometriosis and arthritis has genetic correlations, or the relationship is causal. Linkage Disequilibrium Score (LDSC) and Mendelian Randomization (MR) analyses use genetic variation as a natural experiment to explore genetic correlations and causal inferences from observational data, reducing unmeasured confounding factors. Method: Participants (aged 20-54 years, n = 2,915) for the cross-sectional study were obtained from the National Health and Nutrition Examination Survey (NHANES). Endometriosis and arthritis were diagnosed based on self-reported by reproductive health and medical condition questionnaire. Weighted multivariable logistic regression was used to explore the relationship between endometriosis and arthritis. LDSC and MR analysis were performed using the genome-wide association study (GWAS) summary statistics to identify the causal association. Result: A significant positive association between endometriosis and arthritis was found after multivariable adjustment (OR = 1.89; 95% CI: 1.33, 2.67). When exploring different types of arthritis, a positive association was revealed with rheumatoid arthritis (RA), other types of arthritis, and cases that the arthritis type were unknown, with an OR of 2.07 (95% CI: 1.03, 4.17), 2.78 (95% CI: 1.30, 5.95), and 2.06 (95% CI: 1.36, 3.11), respectively. However, genetic correlation analysis between endometriosis and RA did not reveal any significant findings (all P values > 0.05). Moreover, MR analysis also failed to identify a causal relationship between endometriosis and RA (all P values > 0.05). Conclusion: Cross-sectional study identified a significant positive association between endometriosis and arthritis among US women, especially among RA, while findings based on LDSC and MR analysis did not support a genetic correlation or causal role. These findings suggest that clinicians should pay more attention to the coexistence of RA in endometriosis patients and explore the shared pathophysiological mechanisms of these two disorders, with a particular focus on extrinsic factors rather than intrinsic genetic inheritance.


Assuntos
Artrite , Endometriose , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Inquéritos Nutricionais , Humanos , Endometriose/genética , Endometriose/complicações , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Artrite/genética , Artrite/epidemiologia , Adulto Jovem , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação
5.
Front Endocrinol (Lausanne) ; 15: 1418936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104817

RESUMO

Background: The global prevalence of infertility is 9%, with male factors potentially accounting for 40% to 60% of cases. Conventional treatments can be ineffective, invasive, costly, and linked to adverse effects and high risks. Previous studies have shown that, Chinese herbal medicine (CHM) can regulate the hypothalamus-pituitary-testis axis, improve sperm abnormalities and quality, mitigate oxidative stress, and decrease DNA fragmentation index (DFI). Yet, the evidence backing the use of Chinese herbal medicine (CHM) for treating male factor infertility lacks conviction due to study design limitations, and there remains a scarcity of studies on the live birth rate following CHM treatment for male factor infertility. Here, we describe the rationale and design of a randomized waitlist-controlled trial to evaluate the effect of CHM on the live birth rate among males with infertility. Methods: This study is a single-center, randomized, waitlist-controlled study. A total of 250 couples diagnosed with male factor infertility will be enrolled in this study and then randomly allocated into two groups in a 1:1 ratio. Male participants in CHM group (treatment group) will receive CHM once a day for 3 months. Male participants in the waitlist group (control group) will not receive any treatment for 3 months. After 3 months, participants in both groups need to be followed up for another 12 months. The primary outcome will be the live birth rate; secondary outcomes include semen quality parameters, DFI and pregnancy related outcomes. Safety will also be assessed. Discussion: The purpose of this trial is to explore the effects and safety of CHM on the live birth rate among couples dealing with male factor infertility. The outcome of this trial may provide a viable treatment option for male factor infertility. Trial registration: Chinese Clinical Trial Registry: ChiCTR2200064416. Registered on 7 October 2022, https://www.chictr.org.cn.


Assuntos
Medicamentos de Ervas Chinesas , Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Gravidez , Feminino , Adulto , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Coeficiente de Natalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA