RESUMO
Rewiring of redox metabolism has a profound impact on tumor development, but how the cellular heterogeneity of redox balance affects leukemogenesis remains unknown. To precisely characterize the dynamic change in redox metabolism in vivo, we developed a bright genetically encoded biosensor for H2O2 (named HyPerion) and tracked the redox state of leukemic cells in situ in a transgenic sensor mouse. A H2O2-low (HyPerion-low) subset of acute myeloid leukemia (AML) cells was enriched with leukemia-initiating cells, which were endowed with high colony-forming ability, potent drug resistance, endosteal rather than vascular localization, and short survival. Significantly high expression of malic enzymes, including ME1/3, accounted for nicotinamide adenine dinucleotide phosphate (NADPH) production and the subsequent low abundance of H2O2. Deletion of malic enzymes decreased the population size of leukemia-initiating cells and impaired their leukemogenic capacity and drug resistance. In summary, by establishing an in vivo redox monitoring tool at single-cell resolution, this work reveals a critical role of redox metabolism in leukemogenesis and a potential therapeutic target.
Assuntos
Peróxido de Hidrogênio , Leucemia Mieloide Aguda , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oxirredução , Camundongos Transgênicos , Resistencia a Medicamentos Antineoplásicos/genéticaRESUMO
The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We generated a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there are 3 distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells had an enhanced level of mitochondrial respiration but a glycolytic level similar to that of SoNar-high cells. Interestingly, 10% of SoNar-low cells were enriched for 65% of total immunophenotypic fetal liver HSCs (FL-HSCs) and contained approximately fivefold more functional HSCs than their SoNar-high counterparts. SoNar was able to monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivated MDH1 to sustain the malate-aspartate NADH shuttle activity and HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.
Assuntos
Células-Tronco Hematopoéticas/metabolismo , Metabolômica/métodos , Imagem Óptica/métodos , Animais , Ácido Aspártico/metabolismo , Feto , Células-Tronco Hematopoéticas/citologia , Fígado/citologia , Malatos/metabolismo , Camundongos , Camundongos Transgênicos , NAD/análiseRESUMO
RATIONALE: PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1α) represents an attractive target interfering bioenergetics and mitochondrial homeostasis, yet multiple attempts have failed to upregulate PGC1α expression as a therapy, for instance, causing cardiomyopathy. OBJECTIVE: To determine whether a fine-tuning of PGC1α expression is essential for cardiac homeostasis in a context-dependent manner. METHODS AND RESULTS: Moderate cardiac-specific PGC1α overexpression through a ROSA26 locus knock-in strategy was utilized in WT (wild type) mice and in G3Terc-/- (third generation of telomerase deficient; hereafter as G3) mouse model, respectively. Ultrastructure, mitochondrial stress, echocardiographic, and a variety of biological approaches were applied to assess mitochondrial physiology and cardiac function. While WT mice showed a relatively consistent PGC1α expression from 3 to 12 months old, age-matched G3 mice exhibited declined PGC1α expression and compromised mitochondrial function. Cardiac-specific overexpression of PGC1α (PGC1αOE) promoted mitochondrial and cardiac function in 3-month-old WT mice but accelerated cardiac aging and significantly shortened life span in 12-month-old WT mice because of increased mitochondrial damage and reactive oxygen species insult. In contrast, cardiac-specific PGC1α knock in in G3 (G3 PGC1αOE) mice restored mitochondrial homeostasis and attenuated senescence-associated secretory phenotypes, thereby preserving cardiac performance with age and extending health span. Mechanistically, age-dependent defect in mitophagy is associated with accumulation of damaged mitochondria that leads to cardiac impairment and premature death in 12-month-old WT PGC1αOE mice. In the context of telomere dysfunction, PGC1α induction replenished energy supply through restoring the compromised mitochondrial biogenesis and thus is beneficial to old G3 heart. CONCLUSIONS: Fine-tuning the expression of PGC1α is crucial for the cardiac homeostasis because the balance between mitochondrial biogenesis and clearance is vital for regulating mitochondrial function and homeostasis. These results reinforce the importance of carefully evaluating the PGC1α-boosting strategies in a context-dependent manner to facilitate clinical translation of novel cardioprotective therapies.
Assuntos
Longevidade , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Células Cultivadas , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Telomerase/genética , Telomerase/metabolismoRESUMO
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD+ kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo. These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.
Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas Luminescentes/metabolismo , NADP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sobrevivência Celular , Glucose , Homeostase , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Modelos Moleculares , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Engenharia de ProteínasRESUMO
NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Mitocôndrias , Oxirredução , Pirimidinas , Interferência de RNA , Humanos , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Mitocôndrias/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Colina/metabolismo , NAD/metabolismo , NAD/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Serina/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genéticaRESUMO
As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.
Assuntos
Técnicas Biossensoriais , Ácido Láctico , Animais , Humanos , Camundongos , Técnicas Biossensoriais/métodos , Ácido Láctico/metabolismo , Ácido Láctico/análiseRESUMO
Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.
RESUMO
Senescent cells remain metabolically active, but their metabolic landscape and resulting implications remain underexplored. Here, we report upregulation of pyruvate dehydrogenase kinase 4 (PDK4) upon senescence, particularly in some stromal cell lines. Senescent cells display a PDK4-dependent increase in aerobic glycolysis and enhanced lactate production but maintain mitochondrial respiration and redox activity, thus adopting a special form of metabolic reprogramming. Medium from PDK4+ stromal cells promotes the malignancy of recipient cancer cells in vitro, whereas inhibition of PDK4 causes tumor regression in vivo. We find that lactate promotes reactive oxygen species production via NOX1 to drive the senescence-associated secretory phenotype, whereas PDK4 suppression reduces DNA damage severity and restrains the senescence-associated secretory phenotype. In preclinical trials, PDK4 inhibition alleviates physical dysfunction and prevents age-associated frailty. Together, our study confirms the hypercatabolic nature of senescent cells and reveals a metabolic link between cellular senescence, lactate production, and possibly, age-related pathologies, including but not limited to cancer.
Assuntos
Ácido Láctico , Neoplasias , Proteínas Quinases , Regulação para Cima , Senescência CelularRESUMO
Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.
Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , LipídeosRESUMO
Despite its central importance in cellular metabolism, many details remain to be determined regarding subcellular lactate metabolism and its regulation in physiology and disease, as there is sensitive spatiotemporal resolution of lactate distribution, and dynamics remains a technical challenge. Here, we develop and characterize an ultrasensitive, highly responsive, ratiometric lactate sensor, named FiLa, enabling the monitoring of subtle lactate fluctuations in living cells and animals. Utilizing FiLa, we demonstrate that lactate is highly enriched in mammalian mitochondria and compile an atlas of subcellular lactate metabolism that reveals lactate as a key hub sensing various metabolic activities. In addition, FiLa sensors also enable direct imaging of elevated lactate levels in diabetic mice and facilitate the establishment of a simple, rapid, and sensitive lactate assay for point-of-care clinical screening. Thus, FiLa sensors provide powerful, broadly applicable tools for defining the spatiotemporal landscape of lactate metabolism in health and disease.
Assuntos
Diabetes Mellitus Experimental , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias/metabolismo , Ácido Láctico/metabolismo , MamíferosRESUMO
Cell metabolism plays vital roles in organismal development, but it has been much less studied than transcriptional and epigenetic control of developmental programs. The difficulty might be largely attributed to the lack of in situ metabolite assays. Genetically encoded fluorescent sensors are powerful tools for noninvasive metabolic monitoring in living cells and in vivo by highly spatiotemporal visualization. Among all living organisms, the NAD(H) and NADP(H) pools are essential for maintaining redox homeostasis and for modulating cellular metabolism. Here, we introduce NAD(H) and NADP(H) biosensors, present example assays in developing organisms, and describe promising prospects for how sensors contribute to developmental biology research.
RESUMO
How particular bone marrow niche factors contribute to the leukemogenic activities of leukemia-initiating cells (LICs) remains largely unknown. Here, we showed that ATP levels were markedly increased in the bone marrow niches of mice with acute myeloid leukemia (AML), and LICs preferentially localized to the endosteal niche with relatively high ATP levels, as indicated by a sensitive ATP indicator. ATP could efficiently induce the influx of ions into LICs in an MLL-AF9-induced murine AML model via the ligand-gated ion channel P2X7. P2x7 deletion led to notably impaired homing and self-renewal capacities of LICs and contributed to an approximately 5-fold decrease in the number of functional LICs but had no effect on normal hematopoiesis. ATP/P2X7 signaling enhanced the calcium flux-mediated phosphorylation of CREB, which further transactivated phosphoglycerate dehydrogenase (Phgdh) expression to maintain serine metabolism and LIC fates. P2X7 knockdown resulted in a markedly extended survival of recipients transplanted with either human AML cell lines or primary leukemia cells. Blockade of ATP/P2X7 signaling could efficiently inhibit leukemogenesis. Here, we provide a perspective for understanding how ATP/P2X7 signaling sustains LIC activities, which may benefit the development of specific strategies for targeting LICs or other types of cancer stem cells.
Assuntos
Trifosfato de Adenosina/metabolismo , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Células-Tronco Neoplásicas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Microambiente Tumoral , Trifosfato de Adenosina/genética , Animais , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/genéticaRESUMO
Understanding of NAD+ metabolism provides many critical insights into health and diseases, yet highly sensitive and specific detection of NAD+ metabolism in live cells and in vivo remains difficult. Here, we present ratiometric, highly responsive genetically encoded fluorescent indicators, FiNad, for monitoring NAD+ dynamics in living cells and animals. FiNad sensors cover physiologically relevant NAD+ concentrations and sensitively respond to increases and decreases in NAD+. Utilizing FiNad, we performed a head-to-head comparison study of common NAD+ precursors in various organisms and mapped their biochemical roles in enhancing NAD+ levels. Moreover, we showed that increased NAD+ synthesis controls morphofunctional changes of activated macrophages, and directly imaged NAD+ declines during aging in situ. The broad utility of the FiNad sensors will expand our mechanistic understanding of numerous NAD+-associated physiological and pathological processes and facilitate screening for drug or gene candidates that affect uptake, efflux, and metabolism of this important cofactor.
Assuntos
Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Fluorescência , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , NAD/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Envelhecimento , Animais , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Macrófagos/citologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Peixe-ZebraRESUMO
The metabolic properties of leukemia-initiating cells (LICs) in distinct bone marrow niches and their relationships to cell-fate determinations remain largely unknown. Using a metabolic imaging system with a highly responsive genetically encoded metabolic sensor, SoNar, we reveal that SoNar-high cells are more glycolytic, enriched for higher LIC frequency, and develop leukemia much faster than SoNar-low counterparts in an MLL-AF9-induced murine acute myeloid leukemia model. SoNar-high cells mainly home to and locate in the hypoxic endosteal niche and maintain their activities through efficient symmetric division. SoNar can indicate the dynamics of metabolic changes of LICs in the endosteal niche. SoNar-high human leukemia cells or primary samples have enhanced clonogenic capacities in vitro or leukemogenesis in vivo. PDK2 fine-tunes glycolysis, homing, and symmetric division of LICs. These findings provide a unique angle for the study of metabolisms in stem cells, and may lead to development of novel strategies for cancer treatment.
Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Animais , Divisão Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos TransgênicosRESUMO
SIGNIFICANCE: Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD+/NADH and NADP+/NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD+/NADH and NADP+/NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. CRITICAL ISSUES: These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. FUTURE DIRECTIONS: NAD+/NADH and NADP+/NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.
Assuntos
Técnicas Biossensoriais , Homeostase , NADP/metabolismo , NAD/metabolismo , Oxirredução , Metabolismo Energético , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Espaço Intracelular/metabolismo , Proteínas Luminescentes/genética , Redes e Vias Metabólicas , Imagem Molecular/métodosRESUMO
Genetically encoded fluorescent sensors are widely used to visualize secondary messengers, metabolites and dynamic events in living cells. However, almost all of these sensors are based on Aequorea GFPs or GFP-like proteins, which do not correctly maturate and fluoresce under hypoxia or anoxic conditions, greatly limiting their application in biomedical research. Herein, we provide a novel strategy for design of sensors and report a series of thiol redox-sensitive sensor based on a recently discovered oxygen-independent fluorescent protein UnaG from Japanese eel. These redox sensors have large dynamic range, rapid responsiveness, a flexible "switch", and pH-independence, are particularly compatible with hypoxia conditions, and therefore represent a substantial improvement for live-cell redox measurement. We further demonstrated the versatility of these redox sensors, by simultaneously monitoring redox changes and hypoxia state in living cells, thereby proving its capability as a powerful and flexible tool for indexing multidimensional metabolism data in the context of physiological stressors and pathological states. These redox sensors are not only the first case of UnaG-based functional sensors, but also the first case of functional sensors based on non GFP-like proteins. Based on this strategy, more oxygen-independent biosensors could be developed, hence, provide new opportunities for bioimaging.
Assuntos
Técnicas Biossensoriais/métodos , Enguias , Proteínas de Peixes , Proteínas Luminescentes , Compostos de Sulfidrila , Animais , Hipóxia Celular/fisiologia , Proteínas de Peixes/química , Proteínas Luminescentes/química , OxirreduçãoRESUMO
Cellular oxidation-reduction reactions are mainly regulated by pyridine nucleotides (NADPH/NADP+ and NADH/NAD+), thiols, and reactive oxygen species (ROS) and play central roles in cell metabolism, cellular signaling, and cell-fate decisions. A comprehensive evaluation or multiplex analysis of redox landscapes and dynamics in intact living cells is important for interrogating cell functions in both healthy and disease states; however, until recently, this goal has been limited by the lack of a complete set of redox sensors. We recently reported the development of a series of highly responsive, genetically encoded fluorescent sensors for NADPH that substantially strengthen the existing toolset of genetically encoded sensors for thiols, H2O2, and NADH redox states. By combining sensors with unique spectral properties and specific subcellular targeting domains, our approach allows simultaneous imaging of up to four different sensors. In this protocol, we first describe strategies for multiplex fluorescence imaging of these sensors in single cells; then we demonstrate how to apply these sensors to study changes in redox landscapes during the cell cycle, after macrophage activation, and in living zebrafish. This approach can be adapted to different genetically encoded fluorescent sensors and various analytical platforms such as fluorescence microscopy, high-content imaging systems, flow cytometry, and microplate readers. A typical preparation of cells or zebrafish expressing different sensors takes 2-3 d; microscopy imaging or flow-cytometry analysis can be performed within 5-60 min.
Assuntos
Corantes Fluorescentes/análise , Peróxido de Hidrogênio/análise , Proteínas Luminescentes/análise , NAD/análise , Imagem Óptica/métodos , Compostos de Sulfidrila/análise , Animais , Técnicas Biossensoriais/métodos , Citometria de Fluxo/métodos , Fluorescência , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , NAD/metabolismo , Oxirredução , Células RAW 264.7 , Compostos de Sulfidrila/metabolismo , Peixe-ZebraRESUMO
Engineered fluorescent indicators for visualizing mercury ion (Hg2+) are powerful tools to illustrate the intracellular distribution and serious toxicity of the ion. However, the sensitive and specific detection of Hg2+ in living cells and in vivo is challenging. This paper reported the development of fluorescent indicators for Hg2+ in green or red color by inserting a circularly permuted fluorescent protein into a highly mercury-specific repressor. These sensors provided a rapid, sensitive, specific, and real-time read-out of Hg2+ dynamics in solutions, bacteria, subcellular organelles of mammalian cells, and zebrafish, thereby providing a useful new method for Hg2+ detection and bioimaging. In conjunction with the hydrogen peroxide sensor HyPer, we found mercury uptake would trigger subcellular oxidative events at the single-cell level, and provided visual evidence of the causality of mercury and oxidative damage. These sensors would paint the landscape of mercury toxicity to cell functions.