Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 250: 118469, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354884

RESUMO

Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.


Assuntos
Antozoários , Archaea , Bactérias , Antozoários/microbiologia , Antozoários/fisiologia , Animais , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Bactérias/classificação , Resposta ao Choque Térmico , Microbiota , Temperatura Alta , Recifes de Corais
2.
Appl Opt ; 61(24): 7119-7124, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256329

RESUMO

Devices employed for optical polarization conversion are widely used in the areas of optical focusing, optical imaging, and microscopy. To circumvent the problems of traditional optical polarization conversion devices, such as a narrow bandwidth, bulky size, and integration difficulties, a linear-radial polarization converter (LRPC) method based on optical metasurfaces is proposed. For a visible wavelength, i.e., λ=632.8nm, an all-dielectric half-wave plate and a LRPC with a size of 40λ (25.312 µm) are designed. The simulated results demonstrate that the LRPC creates a radially polarized wave from a linearly polarized wave in the wavelength range of 620-680 nm. In addition, a cylindrical vectorial wave with different polarizations can be generated via an adjustment of the polarization direction of the incident wave. These types of polarization converters have the important advantage of high transmittance, while also being ultra-thin and easy to integrate. They are expected to be suitable for miniaturized and integrated optical devices.

3.
Environ Microbiol ; 23(2): 826-843, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32686311

RESUMO

A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.


Assuntos
Antozoários/genética , Antozoários/microbiologia , Bactérias/genética , Microbiota , Água do Mar/química , Animais , Antozoários/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/isolamento & purificação , Recifes de Corais , Dinoflagellida/genética , Dinoflagellida/fisiologia , Temperatura Alta , Água do Mar/microbiologia , Água do Mar/parasitologia , Simbiose , Temperatura , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 112(50): E6993-7002, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621731

RESUMO

Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Perfilação da Expressão Gênica , Neurônios Motores/metabolismo , Mutação , Neuroglia/metabolismo , Biossíntese de Proteínas , Superóxido Dismutase/genética , Idoso , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Humanos , Camundongos , Neurônios Motores/patologia , Neuroglia/patologia , Superóxido Dismutase-1
5.
J Hazard Mater ; 444(Pt A): 130379, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427484

RESUMO

The long-term dismantling of electronic waste (E-waste) has contaminated the soil environment considerably. In spite of this, it is unknown if it affects the depth-resolved microbial communities. In the present research, six soil profiles (dismantling sites and the surrounding farmland) were collected from one of the largest Chinese E-waste disposal centers to identify depth-resolved microbiota and assess how heavy metal contamination affects microbial adaptation. Results suggested that cadmium (0.12-7.22 mg kg-1) and copper (18.99-11282.03 mg kg-1) were the main pollutants in the test soil profiles, and their concentrations gradually decreased with depth. The surrounding contaminated farmland has a more complex interaction and higher modularity (0.77-0.85) among microbes, indicating a stronger niche differentiation to enhance functional diversity. The proportion of positive interactions between taxa decreased with depth, as high heavy metals contamination in the topsoil results in the co-occurrence of microorganisms with the same ecological niche that collaborated to face environmental stress. Soil physicochemical properties, heavy metals concentration, and soil depth critically affect microbial communities. Microbial community assembly processes in the topsoil were affected by environmental filtering, i.e., by deterministic processes (NST: 13-52%), while were more stochastic (NST: 46-72%) in the subsoil due to the environment of soil becoming more homogeneous as soil depth increased.


Assuntos
Resíduo Eletrônico , Microbiota , Eliminação de Resíduos , Solo , Fazendas
6.
Environ Microbiome ; 18(1): 83, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996910

RESUMO

BACKGROUND: The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS: Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS: Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.

7.
Microorganisms ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35208848

RESUMO

High-throughput sequencing is a powerful tool used for bivalve symbiosis research, but the largest barrier is the contamination of host DNA. In this work, we assessed the host DNA reduction efficiency, microbial community structure, and microbial diversity of four different sample pre-treatment and DNA extraction methods employed in bivalve gill tissue samples. Metagenomic sequencing showed the average proportions of reads belonging to microorganisms retrieved using PowerSoil DNA extraction kit, pre-treatment with differential centrifugation, pre-treatment with filtration, and HostZERO Microbial DNA kit samples were 2.3 ± 0.6%, 2.5 ± 0.2%, 4.7 ± 1.6%, and 42.6 ± 6.8%, respectively. The microbial DNA was effectively enriched with HostZERO Microbial DNA kit. The microbial communities revealed by amplicon sequencing of the 16S rRNA gene showed the taxonomic biases by using four different pre-treatment and DNA extraction methods. The species diversities of DNA samples extracted with the PowerSoil DNA extraction kit were similar, while lower than DNA samples extracted with HostZERO Microbial DNA kit. The results of this study emphasized the bias of these common methods in bivalve symbionts research and will be helpful to choose a fit-for-purpose microbial enrichment strategy in future research on bivalves or other microbe-invertebrate symbioses.

8.
mSystems ; 7(4): e0032722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35695425

RESUMO

Improving the availability of representative isolates from the coral microbiome is essential for investigating symbiotic mechanisms and applying beneficial microorganisms to improve coral health. However, few studies have explored the diversity of bacteria which can be isolated from a single species. Here, we isolated a total of 395 bacterial strains affiliated with 49 families across nine classes from the coral Pocillopora damicornis. Identification results showed that most of the strains represent potential novel bacterial species or genera. We also sequenced and assembled the genomes of 118 of these isolates, and then the putative functions of these isolates were identified based on genetic signatures derived from the genomes and this information was combined with isolate-specific phenotypic data. Genomic information derived from the isolates identified putative functions including nitrification and denitrification, dimethylsulfoniopropionate transformation, and supply of fixed carbon, amino acids, and B vitamins which may support their eukaryotic partners. Furthermore, the isolates contained genes associated with chemotaxis, biofilm formation, quorum sensing, membrane transport, signal transduction, and eukaryote-like repeat-containing and cell-cell attachment proteins, all of which potentially help the bacterium establish association with the coral host. Our work expands on the existing culture collection of coral-associated bacteria and provides important information on the metabolic potential of these isolates which can be used to refine understanding of the role of bacteria in coral health and are now available to be applied to novel strategies aimed at improving coral resilience through microbiome manipulation. IMPORTANCE Microbes underpin the health of corals which are the building blocks of diverse and productive reef ecosystems. Studying the culturable fraction of coral-associated bacteria has received less attention in recent times than using culture-independent molecular methods. However, the genomic and phenotypic characterization of isolated strains allows assessment of their functional role in underpinning coral health and identification of beneficial microbes for microbiome manipulation. Here, we isolated 395 bacterial strains from tissues of Pocillopora damicornis with many representing potentially novel taxa and therefore providing a significant contribution to coral microbiology through greatly enlarging the existing cultured coral-associated bacterial bank. Through analysis of the genomes obtained in this study for the coral-associated bacteria and coral host, we elucidate putative metabolic linkages and symbiotic establishment. The results of this study will help to elucidate the role of specific isolates in coral health and provide beneficial microbes for efforts aimed at improving coral health.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/genética , Bactérias/genética , Microbiota/genética , Percepção de Quorum , Genoma
9.
Microorganisms ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35336132

RESUMO

Threatened by climate change and ocean warming, coral reef ecosystems have been shifting in geographic ranges toward a higher latitude area. The water-associated microbial communities and their potential role in primary production contribution are well studied in tropical coral reefs, but poorly defined in high-latitude coral habitats to date. In this study, amplicon sequencing of 16S rRNA and cbbL gene, co-occurrence network, and ßNTI were used. The community structure of bacterial and carbon-fixation bacterial communities showed a significant difference between the center of coral, transitional, and non-coral area. Nitrite, DOC, pH, and coral coverage ratio significantly impacted the ß-diversity of bacterial and carbon-fixation communities. The interaction of heterotrophs and autotrophic carbon-fixers was more complex in the bottom than in surface water. Carbon-fixers correlated with diverse heterotrophs in surface water but fewer lineages of heterotrophic taxa in the bottom. Bacterial community assembly showed an increase by deterministic process with decrease of coral coverage in bottom water, which may correlate with the gradient of nitrite and pH in the habitat. A deterministic process dominated the assembly of carbon-fixation bacterial community in surface water, while stochastic process dominated t the bottom. In conclusion, the structure and assembly of bacterial and carbon-fixer community were affected by multi-environmental variables in high-latitude coral habitat-associated seawater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA