Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 26(1): 109, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187481

RESUMO

BACKGROUND: Breast cancer (BC) is a common malignant tumor with poor prognosis. Angiogenesis is related to the growth and progression of solid tumors and associated with prognosis. ZLM-7, SP1, VEGFA and miR-212-3p were associated with BC angiogenesis and proliferation, however the detailed mechanism was not clear. This study aimed to reveal the regulatory mechanism of angiogenesis of BC. METHODS: BC cell lines were treated with 10 nM ZLM-7 for 8 h. We detected protein expression level by western blot and RNA expression level by qRT-PCR. Overexpression or inhibition of miR-212-3p is performed using miR-212-3p mimics or miR-212-3p inhibitor, Sp1 overexpression using pcDNA3.1 vector. Angiogenesis was analyzed by co-culturing BC cell lines and HUVEC cells. To evaluate regulatory relationship between miR-212-3p and Sp1, dual luciferase assay was performed. Besides, the direct interaction between Sp1 and VEGFA was analyzed by ChIP. Migration and invasion were analyzed by transwell assay and proliferation was detected by clone formation assay. In mice xenograft model developed using BC cells, we also detected angiogenesis marker CD31 through immunohistochemistry. RESULTS: ZLM-7 up-regulated miR-212-3p and inhibited invasion, migration, proliferation and angiogenesis of BC, while miR-212-3p inhibitor antagonized such effects. Binding sequence was revealed between miR-212-3p and Sp1, and expression of Sp1 was inhibited by miR-212-3p on both protein and mRNA level. Sp1 could interact with VEGFA and promoted its expression. Overexpression of miR-212-3p inhibited migration, invasion, proliferation and angiogenesis of BC cell lines, while Sp1 overexpression showed the opposite effect and could antagonize these effects of miR-212-3p overexpression. ZLM-7 decreased VEGFA expression, which was rescued by co-transfection with miR-212-3p inhibitor. Similar, ZLM-7 could inhibit tumor growth and angiogenesis through the miR-212-3p/Sp1/VEGFA axis in vivo. CONCLUSIONS: ZLM-7 could directly up-regulate miR-212-3p in BC. MiR-212-3p could inhibit VEGFA expression through Sp1, thereby inhibiting angiogenesis and progression of BC.


Assuntos
Compostos de Anilina/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Neovascularização Patológica/genética , Fator de Transcrição Sp1/genética , Sulfetos/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Neovascularização Patológica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Bioorg Med Chem Lett ; 30(16): 127286, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631508

RESUMO

Natural quinones and their analogues have attracted growing attention because of their novel anticancer activities. A series of novel isothiazoloquinoline quinone analogues were synthesized and evaluated for antitumor activities against four different kind of cancer cells. Among them, isothiazoloquinolinoquinones inhibited cancer cells proliferation effectively with IC50 values in the nanomolar range, and isothiazoloquinolinoquinone 13a induced the cell apoptosis. Further exploration of possible mechanism of action indicates that 13a not only activates ROS production through NQO1-directed redox cycling but also inhibits the phosphorylation of STAT3. These findings indicate that 13a has potential use for the development of new skeleton drug candidate as an efficient substrate of NQO1 and STAT3 inhibitor.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Quinonas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Quinonas/síntese química , Quinonas/química , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
3.
Biotechnol Biotechnol Equip ; 28(5): 798-804, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26019563

RESUMO

There are more than 2000 ramie germplasms in the National Ramie Germplasm Nursery affiliated with the Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, China. As it is difficult to perform effective conservation, management, evaluation, and utilization of redundant genetic resources, it is necessary to construct a core collection by using molecular markers. In this study, a core collection of ramie consisting of 22 germplasms was constructed from 108 accessions by heuristic search based on 21 Simple Sequence Repeat (SSR) marker combinations. The results showed that there is a poor relationship between the core collection and the geographic distribution. The number of amplification bands for the core collection was the same as that for the entire collection. Shannon's index for three of the SSR primers (14%) and Nei's index for nine of the SSR primers (19%) were lower in the core collection than in the entire collection. The true core collection had wider genetic diversity compared with the random core collection. Collectively, the core collection constructed in this study is reliable and represents the genetic diversity of all the 108 accessions.

4.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890172

RESUMO

Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA