Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 39(3): 441-461, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35257287

RESUMO

Chronic lymphocytic leukemia (CLL) still represents an incurable disorder that may progress to other more aggressive types of cancer despite the available therapy and the development that has been reached in the immunophenotypic and mutational status characterization of CLL. Hence, innovative therapeutics strategies are required together with the advancement in chemo-immunotherapy and targeted treatments. Parallelly, more focus should be put on the drug delivery process to improve the effectiveness/toxicity ratio of both conventional and new drugs and reduce the risk of drug resistance. In the present review, different types of nanocarriers that can be harnessed against CLL, their features, their capabilities in targeting CLL cells, and the latest relevant data are discussed. We provide an integral description of each nanocarrier, including lipidic, polymeric, and inorganic carriers, aiming to offer a constructive resource for the rational design of potential nanomedicines to advance the fight against CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Nanomedicina
2.
Signal Transduct Target Ther ; 9(1): 1, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161204

RESUMO

Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Terapia Combinada
3.
Acta Pharm Sin B ; 13(11): 4607-4620, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969734

RESUMO

Lung inflammation is an essential inducer of various diseases and is closely related to pulmonary-endothelium dysfunction. Herein, we propose a pulmonary endothelium-targeted codelivery system of anti-inflammatory indomethacin (IND) and antioxidant superoxide dismutase (SOD) by assembling the biopharmaceutical SOD onto the "vector" of rod-like pure IND crystals, followed by coating with anti-ICAM-1 antibody (Ab) for targeting endothelial cells. The codelivery system has a 237 nm diameter in length and extremely high drug loading of 39% IND and 2.3% SOD. Pharmacokinetics and biodistribution studies demonstrate the extended blood circulation and the strong pulmonary accumulation of the system after intravenous injection in the lipopolysaccharide (LPS)-induced inflammatory murine model. Particularly, the system allows a robust capacity to target pulmonary endothelium mostly due to the rod-shape and Ab coating effect. In vitro, the preparation shows the synergistic anti-inflammatory and antioxidant effects in LPS-activated endothelial cells. In vivo, the preparation exhibits superior pharmacodynamic efficacy revealed by significantly downregulating the inflammatory/oxidative stress markers, such as TNF-α, IL-6, COX-2, and reactive oxygen species (ROS), in the lungs. In conclusion, the codelivery system based on rod-like pure crystals could well target the pulmonary endothelium and effectively alleviate lung inflammation. The study offers a promising approach to combat pulmonary endothelium-associated diseases.

4.
J Control Release ; 346: 260-274, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469984

RESUMO

Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.


Assuntos
Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/tratamento farmacológico , SARS-CoV-2 , Distribuição Tecidual
5.
Acta Pharm Sin B ; 12(2): 600-620, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401226

RESUMO

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

6.
Adv Drug Deliv Rev ; 186: 114356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595022

RESUMO

With the emerging advances in utilizing nanocarriers for biomedical applications, a molecular-level understanding of the in vivo fate of nanocarriers is necessary. After administration into human fluids, nanocarriers can attract proteins onto their surfaces, forming an assembled adsorption layer called protein corona (PC). The formed PC can influence the physicochemical properties and subsequently determine nanocarriers' biological behaviors. Therefore, an in-depth understanding of the features and effects of the PC on the nanocarriers' surface is the first and most important step towards controlling their in vivo fate. This review introduces fundamental knowledge such as the definition, formation, composition, conformation, and characterization of the PC, emphasizing the in vivo environmental factors that control the PC formation. The effect of PC on the physicochemical properties and thus biological behaviors of nanocarriers was then presented and thoroughly discussed. Finally, we proposed the design strategies available for engineering PC onto nanocarriers to manipulate them with the desired surface properties and achieve the best biomedical outcomes.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Nanopartículas/química , Coroa de Proteína/química , Proteínas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA