Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(7): 897-909, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783091

RESUMO

Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.


Assuntos
Necroptose , Proteínas Quinases , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Camundongos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Caspase 8/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494451

RESUMO

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Assuntos
Apoptose , Viroses , Animais , Camundongos , Caspase 8/genética , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Enzyme Microb Technol ; 145: 109748, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33750543

RESUMO

In the secretome of Phanerochaete chrysosporium, a white-rot fungus serving as a model organism to elucidate lignocellulose deconstruction, the copper containing metalloprotein glyoxal oxidase (GLOX) is potentially involved in the crucial production of hydrogen peroxide to fuel and initiate oxidative biomass degradation by lignin-degrading peroxidases. Its ability to oxidize a variety of aldehydes and α-hydroxy carbonyls with the concomitant reduction of dioxygen to hydrogen peroxide has attracted attention for its application as green biocatalyst in different industrial fields. Here we report and compare two efficient processes for the heterologous production of GLOX from P. chrysosporium using the well-established methanolytic yeast Pichia pastoris and the filamentous fungus Trichoderma reesei as expression hosts with subsequent purification by anion exchange and hydrophobic interaction chromatography. Both processes were shown to be suitable for the production of the target protein at high levels. GLOX produced in T. reesei carries mainly Man5 glycosylation while the enzyme produced in P. pastoris exhibits the typical high-mannose type N-glycosylation. The enzyme expressed in P. pastoris showed slightly higher specific activities which correlates with the higher copper loading of 65.5 % compared to 51.9 % for the protein from T. reesei. The pH optimum for both recombinant proteins was 6.0, however, GLOX activity was found to be highly affected by different buffer species. Both enzymes showed very similar substrate affinities and turnover numbers with the highest catalytic efficiency observed for methylglyoxal. GLOX from both expression hosts is therefore a suitable enzyme for further mechanistic characterization and application studies.


Assuntos
Phanerochaete , Trichoderma , Oxirredutases do Álcool , Hypocreales , Phanerochaete/genética , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA