Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34675, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144952

RESUMO

The large inner surface of porous silicon (pSi) not only provides unique opportunities for introducing various foreign materials into the open pores, but is also responsible for a lot of processes during the pSi cathode polarization. PSi surface and contact effects are considered in the article. The space charge layer induced by both the surface states and the double electrical layer in the solution is shown to have a decisive influence on the electrical conductivity of the silicon skeleton in the pSi layer. Depending on the depletion degree of the pSi skeleton, the electrochemical deposition of metals is possible either on the entire pSi surface or pore filling from the bottom. The erbium hydroxide formation in the process of the cathode polarization of pSi in the solution of erbium salt is shown to have a chemical nature and is stimulated by the alkalization of the cathode space. The formation of erbium-containing deposits occurs by the following mechanism. First, hydrogen is electrochemically reduced at the cathode. This causes the ion imbalance and leads to the alkalinization in the space near the cathode. The alkaline medium creates conditions for the chemical process of the erbium hydroxide formation. Formed as a gel, erbium hydroxide is physically adsorbed on the cathode surface as a film. The components of the solution are necessarily included in the deposit composition. The accompanying oxidation and dehydrogenation effects during the cathode pSi polarization are considered. Moreover, during the pSi oxidation, the solid phase extends in the pore increases the steric factor, which is essential for the formation of internal oxygen bonds. These effects are characteristic features of any pSi cathode treatment. These formation rules are true for any lanthanide. The obtained results open wide prospects for practical application of Er-filled pSi as a promising material for practical biomedical application as prospective electrodes.

2.
RSC Adv ; 13(38): 26879-26891, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692354

RESUMO

Nanosized spinel ferrites Co1-xNixFe2O4 (where x = 0.0-1.0) or CNFO have been produced using a chemical method. The crystal structure's characteristics have been determined through the utilization of X-ray diffraction (XRD). It has been demonstrated that all samples have a single phase with cubic syngony (space group Fd3̄m). The lattice parameter and unit cell volume behavior correlate well with the average ionic radii of Co2+ and Ni2+ ions and their coordination numbers. Thus, an increase in the Ni2+ content from x = 0.0 to x = 1.0 leads to a decrease in the lattice parameter (from 8.3805 to 8.3316 Å) and unit cell volume (from 58.86 to 57.83 Å3). Elastic properties have been investigated using Fourier transform infrared (FTIR) analysis. The peculiarities of the microwave properties have been analyzed by the measured S-parameters in the range of 8-18 GHz. It was assumed that the energy losses due to reflection are a combination of electrical and magnetic losses due to polarization processes (dipole polarization) and magnetization reversal processes in the region of inter-resonant processes. A significant attenuation of the reflected wave energy (-10 … -21.8 dB) opens broad prospects for practical applications.

3.
Sci Rep ; 10(1): 14411, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873846

RESUMO

A new method for the specific surface energy investigation based on a combination of the force spectroscopy and the method of nanofriction study using atomic force microscopy was proposed. It was shown that air humidity does not affect the results of investigation by the proposed method as opposed to the previously used methods. Therefore, the method has high accuracy and repeatability in air without use of climate chambers and liquid cells. The proposed method has a high local resolution and is suitable for investigation of the specific surface energy of individual nanograins or fixed nanoparticles. The achievements described in the paper demonstrate one of the method capabilities, which is to control the growth mechanism of thin magnetic films. The conditions for the transition of the growth mechanism of thin Ni80Fe20 films from island to layer-by-layer obtained via electrolyte deposition have been determined using the proposed method and the purpose made probes with Ni coating.

4.
RSC Adv ; 10(54): 32638-32651, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516497

RESUMO

Herein, we investigated the correlation between the chemical composition, microstructure, and microwave properties of composites based on lightly Tb/Tm-doped Sr-hexaferrites (SrTb0.01Tm0.01Fe11.98O19) and spinel ferrites (AFe2O4, A = Co, Ni, Zn, Cu, or Mn), which were fabricated by a one-pot citrate sol-gel method. Powder XRD patterns of products confirmed the presence of pure hexaferrite and spinel phases. Microstructural analysis was performed based on SEM images. The average grain size for each phase in the prepared composites was calculated. Comprehensive investigations of dielectric properties (real (ε') and imaginary parts (ε'') of permittivity, dielectric loss tangent (tan(δ)), and AC conductivity) were performed in the 1-3 × 106 Hz frequency range at 20-120 °C. Frequency dependency of microwave properties were investigated using the coaxial method in frequency range of 2-18 GHz. The non-linear behavior of the main microwave properties with a change in composition may be due to the influence of the soft magnetic phase. It was found that Mn- and Ni-spinel ferrites achieved the strongest electromagnetic absorption. This may be due to differences in the structures of the electron shell and the radii of the A-site ions in the spinel phase. It was discovered that the ionic polarization transformed into the dipole polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA