Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microsc Microanal ; : 1-7, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34503599

RESUMO

The properties and the shape memory effect depend, among other things, on chemical composition, as well as the method of shape memory alloy (SMA) production. One of the manufacturing methods that leads to the amorphous/nanocrystalline SMA is high-energy ball milling combined with annealing. Using this technique, an SMA memory alloy, with the nominal chemical composition of Ni25Ti50Cu25, was produced from commercial elemental powders (purity −99.7%). The structure and morphology were characterized (at the various stages of its production) by the use of X-ray diffraction, as well as electron microscopy (both scanning and transmission). Choosing the appropriate grinding time made it possible to produce an NiTiCu alloy with a different crystallite size. Its average size changed from 6.5 nm (after 50 h) to about 2 nm (100 h). Increasing the grinding time up to 140 h resulted in the formation of areas that showed the B19 martensite and the Ti2(Ni,Cu) phase with the average crystallite size of about 6 nm (as milled). After crystallization, the average size increased to 11 nm.

2.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204559

RESUMO

Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.


Assuntos
Vias Biossintéticas/genética , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Parede Celular/metabolismo , Daucus carota/fisiologia , Edição de Genes , Sequência de Bases , Parede Celular/ultraestrutura , Daucus carota/ultraestrutura , Marcação de Genes , Genes de Plantas , Vetores Genéticos/genética , Mutação , Fenótipo , Plastídeos/genética , Plastídeos/ultraestrutura
3.
Mikrochim Acta ; 187(9): 542, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880021

RESUMO

Molybdenum disulfide (MoS2) was supported on graphene oxide (GO) by hydrothermal method. The resulting nanocomposite (MoS2-rGO) was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The experiments show that at pH 2, MoS2-rGO has a great affinity for adsorption of hexavalent chromium ions while Cr(III) ions remain in aqueous sample. In the adsorption process, the dominant role plays chemisorption. The determined adsorption capacity is 583.5 mg g-1. Parameters affecting the extraction process, namely sample pH, sample volume, contact time, and matrix ions, were investigated by sequential batch tests. Under optimal conditions (pH 2, sample volume 50 mL, sonication time 10 min, adsorbent mass 1 mg), the calibration curve covers the 1-200 ng mL-1 range with a correlation coefficient (R2) of 0.998. The recovery of the method is 97 ± 3%. Other data of merit include a relative standard deviation of < 3.5%, enrichment factor of 3350, and detection limit of 0.050 ng mL-1. The accuracy of the method was confirmed by analysis of the reference materials QC1453 (chromium VI in drinking water) and QC3015 (chromium VI in seawater). The method was successfully applied to chromium speciation in water samples, including high salinity ones. The concentration of Cr(III) was calculated as the difference between the total concentration of chromium (after oxidation of Cr(III) to Cr(VI) with potassium permanganate) and the initial Cr(VI) content.Graphical abstract Schematic presentation of a method for determination of chromium species by energy dispersive X-ray fluorescence spectrometry after preconcentration on molybdenum disulfide supported on reduced graphene oxide.


Assuntos
Cromo/química , Dissulfetos/metabolismo , Grafite/metabolismo , Molibdênio/metabolismo , Extração em Fase Sólida/métodos , Espectrometria por Raios X/métodos , Ultrassonografia/métodos , Água/química , Humanos
4.
J Nanosci Nanotechnol ; 19(5): 2556-2566, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501752

RESUMO

In order to better understand the relationship between parameters of a mechanical alloying process and microstructure, especially the structure of porosity, some research and studies were carried out. The current study investigates the possibility to prepare the porous materials by mechanical alloying and annealing. A high-energy ball-milling process in the planetary ball mill Fritch PULVERISETTE 7 premium line was used for the solid-state synthesis of the single phase powders for titanium based biomedical alloy. The influence of the high-energy ball-milling time on the structure and morphology of the synthesized precursors after annealing was investigated. Additionally, the effect of the variable time of the ball-milling on the structural characteristics, pore morphology and mechanical properties of a biomedical Ti30Ta20Nb (wt.%) was investigated as well. This study confirms the predominance of the titanium ß phase and also the presence of the titanium α phase. The analysis of the diffraction patters obtained using the Rietveld method showed that when the milling time increases, the lattice parameters for the tested samples become reduced. Summing up, it should be pointed out that the areas of pure unreacted titanium still exist in the material. These areas were correlated to the results of an X-ray diffraction analysis. This research starts the process of converting mechanical alloying into a production method which could become an alternative to the space holder technique for the new titanium alloys used for medical applications.


Assuntos
Ligas , Titânio , Porosidade , Pós
5.
J Nanosci Nanotechnol ; 19(5): 2799-2806, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30501783

RESUMO

Titanium and titanium alloys are widely employed in biomedical applications but these alloys have unsatisfactory tribological properties because of their low hardness. Much better biomaterials for hard tissue replacement implants may be acquired by the preparation of titanium composites. Therefore, the connection of excellent biocompatibility and bioactivity of ZrO2 ceramics with good properties of titanium is considered to be a promising approach for the fabrication of more perfect hard tissue replacement implants. This study describes the formation of Ti-ZrO2 nanostructure composite biomaterial. Weighted amounts with the composition corresponding to Ti-xZrO2 (x = 10, 30 and 50 wt.%) were high energy milled in the planetary ball mill PULVERISETTE 7 premium line by Fritch at 10, 30 and 50 h milling times. Structural evolution and morphological changes of the powder particles during mechanical alloying were studied using the X-ray diffractometer, scanning electron microscopy and transmission electron microscopy analysis. The Rietveld method was applied for the verification of the qualitative and quantitative phase composition of the studied material. The parameters of diffraction line profiles were determined by PRO-FIT Toraya procedure. The crystallite sizes and lattice distortions were analyzed by Williamson-Hall method. It was found that during high-energy milling a significant decrease of crystallite size to nanoscale is observed for α-Ti and mZrO2 phases. The images from scanning and transmission electron microscopes of the milled powders show that the size of the agglomerates of Ti nanocrystallites changes in a broad range and that ZrO2 particles can be immersed in larger agglomerates or occur separately.


Assuntos
Ligas , Titânio , Materiais Biocompatíveis , Microscopia Eletrônica de Varredura , Pós
6.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987084

RESUMO

Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root's histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (-) AuNPs, which passage to the cell.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Protoplastos/metabolismo , Arabidopsis/ultraestrutura , Parede Celular/metabolismo , Nanopartículas Metálicas/ultraestrutura , Raízes de Plantas/ultraestrutura , Protoplastos/citologia , Protoplastos/ultraestrutura , Propriedades de Superfície
7.
Planta ; 248(6): 1455-1471, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30132151

RESUMO

MAIN CONCLUSION: The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work. The content of carotenoid pigments in d-o callus was at the same level as in an orange carrot storage root and nine-fold higher than in p-y callus. Carotenoids accumulated mainly in abundant crystalline chromoplasts that are also common in carrot root but not in p-y callus. Using transmission electron microscopy, other types of chromoplasts were also found in d-o callus, including membranous chromoplasts rarely identified in plants and not observed in carrot root until now. At the transcriptional level, most carotenogenesis-associated genes were upregulated in d-o callus in comparison to p-y callus, but their expression was downregulated or unchanged when compared to root tissue. Two pathway steps were critical and could explain the massive carotenoid accumulation in this tissue. The geranylgeranyl diphosphate synthase gene involved in the biosynthesis of carotenoid precursors was highly expressed, while the ß-carotene hydroxylase gene involved in ß-carotene conversion to downstream xanthophylls was highly repressed. Additionally, paralogues of these genes and phytoene synthase were differentially expressed, indicating their tissue-specific roles in carotenoid biosynthesis and metabolism. The established system may serve as a novel model for elucidating plastid biogenesis that coincides with carotenogenesis.


Assuntos
Carotenoides/metabolismo , Daucus carota/metabolismo , Oxigenases de Função Mista/metabolismo , Vias Biossintéticas , Daucus carota/genética , Daucus carota/ultraestrutura , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plastídeos/metabolismo , Plastídeos/ultraestrutura , beta Caroteno/metabolismo
8.
Environ Monit Assess ; 186(11): 7399-411, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25049142

RESUMO

Physical aspects of tobacco samples, used in some commonly available Indian brands of cigarettes, with emphasis on their magnetic characterization before and after they get burnt into ashes, are described. The present work highlights the ultrafine nature of the cigarette ashes and provides a compositional insight of their constituent particulate matters as revealed by the XRD and SEM studies. Based on the EDX spectra, elemental distributions of different tobacco samples, before and after they get burnt, are presented. In this work, magnetic measurements of the un-burnt tobacco samples are reported. An attempt is made to shed light on the origin of magnetism observed in these samples.


Assuntos
Monitoramento Ambiental , Substâncias Perigosas/análise , Material Particulado/análise , Produtos do Tabaco/análise , Fenômenos Magnéticos , Magnetismo , Nicotiana
9.
Nanoscale ; 16(8): 4249-4265, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348722

RESUMO

In this work, we report the results of our investigations on the structural and luminescence properties of SiO2-LaF3:Pr3+ nano-glass-ceramics synthesized using the sol-gel method. Based on XRD, microscopic (TEM), and ATR-IR measurements, the crystallization of LaF3 nanocrystals favorably occupied by Pr3+ ions and overall transformations within the silicate sol-gel hosts dependent on heat-treatment conditions of the as-prepared amorphous xerogels were characterized. The fabricated oxyfluoride nano-glass-ceramics revealed the emissions within the greenish-blue (3P0,1 → 3H4, 3P0,1 → 3H5), reddish-orange (3P0,1 → 3H6, 1D2 → 3H4, 3P0 → 3F2,3), and NIR spectral scopes (1D2 → 3F4,1G4, 1G4 → 3H5, 3F3,4 → 3H4). Based on the luminescence spectra in the VIS range, the CIE chromaticity coordinates, correlated color temperatures (CCT), and color purities (CP) were calculated. The obtained results clearly indicate that the prepared Pr3+-doped sol-gel nano-glass-ceramics exhibit warm or neutral white light emissions with CCT values in the range from 2567 K to 3962 K. The lowest CP value was estimated at 12.8%, indicating that the fabricated samples are able to emit bright white light. Additionally, the NIR emissions cover E, S, C, and L bands, which are important for devices applicable in telecommunication technologies. For further characterization, the τ(3P0) and τ(1D2) decay times were estimated. It was established that the emissions from the 3P0 and the 1D2 excited states of Pr3+ ions, as well as the participation of cross-relaxation (CR) processes, are dependent on the size of crystallized LaF3 phase, distribution of optically active Pr3+ ions between amorphous and crystalline phase (determining the Pr3+-Pr3+ inter-ionic distances), and relative content of OH groups in the prepared sol-gel hosts.

10.
Materials (Basel) ; 17(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893994

RESUMO

The presented work considers the influence of the hafnium and molybdenum to zirconium ratio of Ti20Ta20Nb20(HfMo)20-xZrx (where x = 0, 5, 10, 15, 20 at.%) high-entropy alloys in an as-cast state for potential biomedical applications. The current research continues with our previous results of hafnium's and molybdenum's influence on a similar chemical composition. In the presented study, the microstructure, selected mechanical properties, and corrosion resistance were investigated. The phase formation thermodynamical calculations were also applied to predict solid solution formation after solidification. The calculations predicted the presence of multi-phase, body-centred cubic phases, confirmed using X-ray diffraction and scanning electron microscopy. The chemical composition analysis showed the segregation of alloying elements. Microhardness measurements revealed a decrease in microhardness with increased zirconium content in the studied alloys. The corrosion resistance was determined in Ringer's solution to be higher than that of commercially applied biomaterials. The comparison of the obtained results with previously reported data is also presented and discussed in the presented study.

11.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676381

RESUMO

The crystallization kinetics and structure evolution during annealing of the Ni45.5Co4.5Mn36.6In13.4 (at. %) powders produced by mechanical alloying (MA) was investigated. After 70 h and 100 h of MA, the powder consisted of a mixture of amorphous and nanocrystalline body-centered cubic (bcc) phases. We observed the relaxation in the as-received powder. The relaxation temperature (Tre) increases logarithmically with the annealing time. Annealing above 440 °C results in (1) ordering of L21, (2) dissolution of the residual Ni and Mn, (3) tetragonal MnNi phase formation and (4) γ phases precipitation. The activation energies of the B2 → L21 and Mn (α-Mn) → MnNi (P4/mmm) transformations were calculated.

12.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837086

RESUMO

The presented work aimed to investigate the influence of the hafnium/(zirconium and molybdenum) ratio on the microstructure, microhardness and corrosion resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) high entropy alloys in an as-cast state produced from elemental powder and obtained via the vacuum arc melting technique. All studied alloys contained only biocompatible elements and were chosen based on the thermodynamical calculations of phase formation predictions after solidification. Thermodynamical calculations predicted the presence of multi-phase, body-centered cubic phases, which were confirmed using X-ray diffraction and scanning electron microscopy. Segregation of alloying elements was recorded using elemental distribution maps. A decrease in microhardness with an increase in hafnium content in the studied alloys was revealed (512-482 HV1). The electrochemical measurements showed that the studied alloys exhibited a high corrosion resistance in a simulated body fluid environment (breakdown potential 4.60-5.50 V vs. SCE).

13.
Materials (Basel) ; 16(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837150

RESUMO

Iron-based compounds with a ThMn12-type structure have the potential to bridge the gap between ferrites and high performance Nd2Fe14B magnets. From the point of view of possible applications, the main advantage is their composition, with about 10 wt.% less rare earth elements in comparison with the 2:14:1 phase. On the other hand, the main issue delaying the development of Fe-rich alloys with a ThMn12-type structure is their structural stability. Therefore, various synthesis methods and stabilizing elements have been proposed to stabilize the structure. In this work, the influence of increasing Nd substitution on the phase constitution of Zr0.4-xNdxCe0.6Fe10Si2 (0 ≤ x ≤ 0.3) alloys was analyzed. X-ray diffraction and 57Fe Mössbauer spectrometry were used as the main methods to derive the stability range and destabilization routes of the 1:12 structure. For the arc-melted samples, an increase in the lattice parameters of the ThMn12-type structure was observed with the simultaneous growth of bcc-(Fe,Si) content with increasing Nd substitution. After isothermal annealing, the ThMn12-type structure (and the coexisting bcc-(Fe,Si)) were stable over the whole composition range. While the formation of a 1:12 phase was totally suppressed in the as-cast state for x = 0.3, further heat treatment resulted in the growth of about 45% of the ThMn12-type phase. The results confirmed that the stability range of ThMn12-type structure in the Nd-containing alloys was well improved by other substitutions and the heat treatment, which in turn, is also needed to homogenize the ThMn12-type phase. After further characterization of the magnetic properties and optimization of microstructure, such hard/soft magnetic composites can show their potential by exploiting the exchange spring mechanism.

14.
RSC Adv ; 13(18): 12386-12393, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091606

RESUMO

In the current work, germanate phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) have been synthesized and then investigated using luminescence spectroscopy. The X-ray diffraction analysis demonstrate that ceramic compounds Li2MgGeO4 containing Pr3+ and Tm3+ ions crystallize in a monoclinic crystal lattice. Luminescence properties of Pr3+ and Tm3+ ions have been examined under different excitation wavelengths. The most intense blue emission band related to the 1D2 → 3F4 transition of Tm3+ is overlaps well with broad band located near 500 nm, which is assigned to F-type centers. These effects are not evident for Pr3+ ions. Ceramic phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) are characterized based on measurements of the excitation/emission spectra and their decays. The experimental results indicate that germanate ceramics Li2MgGeO4 doped with trivalent rare earth ions can be applied as inorganic phosphors emitting orange (Pr3+) or blue (Tm3+) light.

15.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770110

RESUMO

In the past twenty years, the basic investigation of innovative Non-Linear Optical (NLO) crystals has received significant attention, which has built the crucial heritage for the use of NLO materials. Fundamental research is essential given the scarcity of materials for NLO compounds, especially in the deep ultraviolet (DUV) and middle- and far-infrared (MFIR) regions. In the present work, we synthesized high-quality MFIR SbI3·3S8 NLO crystals having a length in the range of 1-5 mm through rapid facile liquid phase ultrasonic reaction followed by the assistance of instantaneous natural evaporation phenomenon of the solvent at room temperature. X-ray diffraction (XRD) results ratify the hexagonal R3m structure of SbI3·3S8 crystal, and energy-dispersive X-ray spectroscopy (EDX) demonstrates that the elemental composition of SbI3·3S8 crystal is similar to that of its theoretical composition. The direct and indirect forbidden energy gaps of SbI3·3S8 were measured from the optical transmittance spectra and they were shown to be 2.893 eV and 1.986 eV, respectively. The green sparkling signal has been observed from the crystal during the second harmonic generation (SHG) experiment. Therefore, as inorganic adducts are often explored as NLO crystals, this work on the MFIR SbI3·3S8 NLO crystal can bring about additional investigations on this hot topic in the near future.

16.
J Funct Biomater ; 14(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504870

RESUMO

The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + ß) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.

17.
Acta Crystallogr B ; 68(Pt 1): 40-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22267557

RESUMO

In the spin-crossover compound [Fe(ptz)(6)](BF(4))(2) (where ptz=1-n-propyltetrazole) six different phases are observed. When a single crystal is slowly cooled from high temperatures to those below 125 K, the reflections broaden into diffuse maxima and split into two maxima along the c* direction [Kusz, Gütlich & Spiering (2004). Top. Curr. Chem. 234, 129-153]. As both maxima are broad along the c* direction, the short-range order exists only along the c direction and in the ab plane the structure remains long-range ordered. In this disordered phase additional satellite reflections appear. Upon heating above 135 K, the diffuse maxima return to their previous shape and this process is completely reversible. Rapidly cooled samples, on the other hand, do not show such splitting and the symmetry remains R\bar 3, despite a jump in lattice parameters. We use a special technique to analyse the disorder model of the slowly cooled samples, which consists of layered domains shifted in the hexagonal ab plane. The low-spin disordered phase was solved in a novel approach to accommodate the very unusual twinning and refined in the non-standard space group C\bar 1. In contrast to the ordered low-spin phase, the Fe ion is in a non-centrosymmetric coordination polyhedron and two of the six propyl groups change their conformation.

18.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 9): o2797-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22969671

RESUMO

In the title compound, C(48)H(38)N(4)O(8)·C(3)H(6)O(2), the porphyrin mol-ecule is centrosymmetric. The propionic acid solvent mol-ecule is disordered over two sets of sites with equal occupancy factors. The porphyrin central core is almost planar, with an r.m.s. deviation of the fitted atoms of 0.045 Å. The substituent benzene rings make dihedral angles of 70.37 (4) and 66.95 (4)° with respect to the porphyrin core plane. The crystal structure is stabilized by an inter-esting network of hydrogen bonds. Porphyrin mol-ecules are connected by O-H⋯O hydrogen bonds creating ribbons running along the [101] direction. Weak C-H⋯O hydrogen bonds connect separate mol-ecular ribbons in the [110] direction, creating (-111) layers. Intra-molecular N-H⋯N hydrogen bonds also occur. The propionic acid molecules are connected by pairs of -H⋯O hydrogen bonds, creating dimers.

19.
ACS Biomater Sci Eng ; 8(8): 3450-3462, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35856645

RESUMO

Cellular localization of carbon nanomaterials in cancer cells is essential information for better understanding their interaction with biological targets and a crucial factor for further evaluating their biological properties as nanovehicles or nanotherapeutics. Recently, increasing efforts to develop promising fullerene nanotherapeutics for cancer nanotechnology have been made. However, the main challenge regarding studying their cellular effects is the lack of effective methods for their visualization and determining their cellular fate due to the limited fluorescence of buckyball scaffolds. Herein, we developed a method for cellular localization of nonfluorescent and water-soluble fullerene nanomaterials using the in vitro click chemistry approach. First, we synthesized a triple-bonded fullerene probe (TBC60ser), which was further used as a starting material for 1,3-dipolar cycloaddition using 3-azido-7-hydroxycoumarin and sulfo-cyanine5 azide fluorophores to create fluorescent fullerene triazoles. In this work, we characterized the structurally triple-bonded [60]fullerene derivative and confirmed its high symmetry (Th) and the successful formation of fullerene triazoles by spectroscopic techniques (i.e., ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopies) and mass spectrometry. The created fluorescent fullerene triazoles were successfully localized in the MCF-7 breast cancer cell line using fluorescent microscopy. Overall, our findings demonstrate that TBC60ser localizes in the lysosomes of MCF-7 cells, with only a small affinity to mitochondria.


Assuntos
Neoplasias da Mama , Fulerenos , Nanoestruturas , Neoplasias da Mama/tratamento farmacológico , Feminino , Fulerenos/química , Fulerenos/farmacologia , Humanos , Células MCF-7 , Nanoestruturas/química , Triazóis
20.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208079

RESUMO

The systematic studies of the extrinsic Maxwell-Wagner-Sillars polarization process in compressed antimony sulfoiodide (SbSI) nanowires are carried out by dielectric spectroscopy. The dielectric response is studied in temperature (100≤T≤350) K and frequency (10-3≤f≤106) Hz ranges. Dielectric functions commonly used for the analysis of dielectric spectra related to intrinsic polarization processes were applied in the elaboration of experimental data. It was found that the respective "semi-circles" in the Cole-Cole-type plots display a characteristic pear-like shape for the ferroelectric phase. On the other hand, the data for the paraelectric phase form symmetrical arcs. This response is effectively parametrized using the experimental Cole-Davidson and Cole-Cole functions fitted to the data obtained for the ferroelectric and paraelectric phases, respectively. It is deduced that the particular shape of spectra in the ferroelectric phase is due to spontaneous polarization, which is responsible for an asymmetric broadening of relaxation functions related to the interfacial polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA