Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Virol ; 96(15): e0088522, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856674

RESUMO

Anti-retroviral therapy (ART) generally suppresses HIV replication to undetectable levels in peripheral blood, but immune activation associated with increased morbidity and mortality is sustained during ART, and infection rebounds when treatment is interrupted. To identify drivers of immune activation and potential sources of viral rebound, we modified RNAscope in situ hybridization to visualize HIV-producing cells as a standard against which to compare the following assays of potential sources of immune activation and virus rebound following treatment interruption: (i) envelope detection by induced transcription-based sequencing (EDITS) assay; (ii) HIV-Flow; (iii) Flow-FISH assays that can scan tissues and cell suspensions to detect rare cells expressing env mRNA, gag mRNA/Gag protein and p24; and (iv) an ultrasensitive immunoassay that detects p24 in cell/tissue lysates at subfemtomolar levels. We show that the sensitivities of these assays are sufficient to detect one rare HIV-producing/env mRNA+/p24+ cell in one million uninfected cells. These high-throughput technologies provide contemporary tools to detect and characterize rare cells producing virus and viral antigens as potential sources of immune activation and viral rebound. IMPORTANCE Anti-retroviral therapy (ART) has greatly improved the quality and length of life for people living with HIV, but immune activation does not normalize during ART, and persistent immune activation has been linked to increased morbidity and mortality. We report a comparison of assays of two potential sources of immune activation during ART: rare cells producing HIV and the virus' major viral protein, p24, benchmarked on a cell model of active and latent infections and a method to visualize HIV-producing cells. We show that assays of HIV envelope mRNA (EDITS assay), gag mRNA, and p24 (Flow-FISH, HIV-Flow. and ultrasensitive p24 immunoassay) detect HIV-producing cells and p24 at sensitivities of one infected cell in a million uninfected cells, thereby providing validated tools to explore sources of immune activation during ART in the lymphoid and other tissue reservoirs.


Assuntos
Infecções por HIV , HIV-1 , RNA Viral , Tropismo Viral , Ativação Viral , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Antígenos Virais/análise , Antígenos Virais/genética , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Humanos , Imunoensaio , Hibridização in Situ Fluorescente , RNA Mensageiro/análise , RNA Viral/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
2.
J Infect Dis ; 224(9): 1593-1598, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33693750

RESUMO

We demonstrate that human immunodeficiency virus (HIV) gag p24 protein is more readily detected in gut and lymph node tissues than in blood CD4+ T cells and correlates better with CD4 count during antiretroviral therapy (ART). Gut p24 levels also measurably decline with ART in natural controllers. During ART, gut p24 expression is more strongly associated both with HIV-specific CD8+ T-cell frequency and plasma soluble CD14 levels than gut HIV RNA expression. This study supports using gag p24 as a marker of HIV expression in HIV+ tissues to study effects of viral persistence and to monitor efficacy of treatment in HIV-based clearance studies.


Assuntos
Proteína do Núcleo p24 do HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Biomarcadores/sangue , Biópsia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Feminino , Proteína do Núcleo p24 do HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , Ativação Linfocitária
3.
Clin Infect Dis ; 72(3): 495-498, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33527127

RESUMO

Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , DNA Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Provírus/genética , Latência Viral
4.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416753

RESUMO

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , RNA Bacteriano/química , RNA Bacteriano/efeitos dos fármacos , Riboswitch/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/química , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Cristalografia por Raios X , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Mononucleotídeo de Flavina/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Transferases Intramoleculares/genética , Ligantes , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Dados de Sequência Molecular , Pirimidinas/isolamento & purificação , Pirimidinas/uso terapêutico , RNA Bacteriano/genética , Reprodutibilidade dos Testes , Riboflavina/biossíntese , Riboswitch/genética , Especificidade por Substrato
5.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134571

RESUMO

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/química , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Quinase 4 de Receptor Acoplado a Proteína G/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Sci Transl Med ; 15(684): eabn2038, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812345

RESUMO

Antiretroviral therapy inhibits HIV-1 replication but is not curative due to establishment of a persistent reservoir after virus integration into the host genome. Reservoir reduction is therefore an important HIV-1 cure strategy. Some HIV-1 nonnucleoside reverse transcriptase inhibitors induce HIV-1 selective cytotoxicity in vitro but require concentrations far exceeding approved dosages. Focusing on this secondary activity, we found bifunctional compounds with HIV-1-infected cell kill potency at clinically achievable concentrations. These targeted activator of cell kill (TACK) molecules bind the reverse transcriptase-p66 domain of monomeric Gag-Pol and act as allosteric modulators to accelerate dimerization, resulting in HIV-1+ cell death through premature intracellular viral protease activation. TACK molecules retain potent antiviral activity and selectively eliminate infected CD4+ T cells isolated from people living with HIV-1, supporting an immune-independent clearance strategy.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Antivirais/uso terapêutico , Apoptose , Morte Celular , Linfócitos T CD4-Positivos , Replicação Viral
7.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733443

RESUMO

Productively infected cells are generally thought to arise from HIV infection of activated CD4+ T cells, and these infected activated cells are thought to be a recurring source of latently infected cells when a portion of the population transitions to a resting state. We discovered and report here that productively and latently infected cells can instead originate from direct infection of resting CD4+ T cell populations in lymphoid tissues in Fiebig I, the earliest stage of detectable HIV infection. We found that direct infection of resting CD4+ T cells was correlated with the availability of susceptible target cells in lymphoid tissues largely restricted to resting CD4+ T cells in which expression of pTEFb enabled productive infection, and we documented persistence of HIV-producing resting T cells during antiretroviral therapy (ART). Thus, we provide evidence of a mechanism by which direct infection of resting T cells in lymphoid tissues to generate productively and latently infected cells creates a mechanism by which the productively infected cells can replenish both populations and maintain two sources of virus from which HIV infection can rebound, even if ART is instituted at the earliest stage of detectable infection.


Assuntos
Infecções por HIV , Humanos , Latência Viral , Replicação Viral , Linfócitos T CD4-Positivos
8.
Bioorg Med Chem Lett ; 22(1): 240-4, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22130130

RESUMO

We have developed a novel series of pyrrolidine derived BACE-1 inhibitors. The potency of the weak initial lead structure was enhanced using library-based SAR methods. The series was then further advanced by rational design while maintaining a minimal ligand binding efficiency threshold. Ultimately, the co-crystal structure was obtained revealing that these inhibitors interacted with the enzyme in a unique fashion. In all, the potency of the series was enhanced by 4 orders of magnitude from the HTS lead with concomitant increases in physical properties needed for series advancement. The progression of these developments in a systematic fashion is described.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Química Farmacêutica/métodos , Pirrolidinas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Cristalização , Cristalografia por Raios X/métodos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Ligantes , Modelos Químicos , Ligação Proteica , Relação Estrutura-Atividade
9.
SLAS Technol ; 27(4): 247-252, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35367399

RESUMO

Dynamic in vitro antibacterial studies provide valuable insight on effective dosing strategies prior to translating to in vivo models. Frequent sampling is required to monitor the pharmacodynamics (PD) of these studies, leading to significant work when quantifying the bacterial load of the samples. Spreading a bacterial suspension on agar to allow colony counting is a proven process for measuring very low levels of growth, but commercial automation equipment to handle agar plating and colony counting at scale is not readily available. We describe a process to greatly decrease the hands-on time required for PD assays by utilizing general-purpose liquid handling robots to plate bacteria and a custom-made plate imager to automate colony counting. The platform developed handles the biological assay from beginning to end as well as sample tracking at each step of the process. The process relies heavily on custom automation scheduling software to enable dynamic process decisions and coordinate data flow throughout. Using the described platform, we can efficiently quantify >100 PD samples per day while maintaining the necessary dynamic range of the assay. Alleviating the main bottleneck in the dynamic antibacterial studies has allowed us to accelerate the rate of experiments to provide antibacterial dosing data within shorter timelines.


Assuntos
Bactérias , Software , Ágar , Antibacterianos/farmacologia , Automação
10.
AIDS ; 36(1): 75-82, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586085

RESUMO

OBJECTIVE: The aim of this study was to examine whether administering both vorinostat and disulfiram to people with HIV (PWH) on antiretroviral therapy (ART) is well tolerated and can enhance HIV latency reversal. DESIGN: Vorinostat and disulfiram can increase HIV transcription in PWH on ART. Together, these agents may lead to significant HIV latency reversal. METHODS: Virologically suppressed PWH on ART received disulfiram 2000 mg daily for 28 days and vorinostat 400 mg daily on days 8-10 and 22-24. The primary endpoint was plasma HIV RNA on day 11 relative to baseline using a single copy assay. Assessments included cell-associated unspliced RNA as a marker of latency reversal, HIV DNA in CD4+ T-cells, plasma HIV RNA, and plasma concentrations of ART, vorinostat, and disulfiram. RESULTS: The first two participants (P1 and P2) experienced grade 3 neurotoxicity leading to trial suspension. After 24 days, P1 presented with confusion, lethargy, and ataxia having stopped disulfiram and ART. Symptoms resolved by day 29. After 11 days, P2 presented with paranoia, emotional lability, lethargy, ataxia, and study drugs were ceased. Symptoms resolved by day 23. CA-US RNA increased by 1.4-fold and 1.3-fold for P1 and P2 respectively. Plasma HIV RNA was detectable from day 8 to 37 (peak 81 copies ml-1) for P2 but was not increased in P1 Antiretroviral levels were therapeutic and neuronal injury markers were elevated in P1. CONCLUSION: The combination of prolonged high-dose disulfiram and vorinostat was not safe in PWH on ART and should not be pursued despite evidence of latency reversal.


Assuntos
Infecções por HIV , Dissulfiram/administração & dosagem , Quimioterapia Combinada/efeitos adversos , Infecções por HIV/tratamento farmacológico , Humanos , Latência Viral/fisiologia , Vorinostat/administração & dosagem
11.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35426377

RESUMO

Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi). Mechanistic investigations using CRISPR-CAS9 and single-cell RNA-Seq informed comprehensive ex vivo evaluations of IAPi plus pan-BET, bD-selective BET, or selective BET isoform targeting in CD4+ T cells from ART-suppressed donors. IAPi+BETi treatment resulted in striking induction of cell-associated HIV gag RNA, but lesser induction of fully elongated and tat-rev RNA compared with T cell activation-positive controls. IAPi+BETi resulted in HIV protein induction in bulk cultures of CD4+ T cells using an ultrasensitive p24 assay, but did not result in enhanced viral outgrowth frequency using a standard quantitative viral outgrowth assay. This study defines HIV transcriptional elongation and splicing as important barriers to latent HIV protein expression following latency reversal, delineates the roles of BET proteins and their BDs in HIV latency, and provides a rationale for exploration of IAPi+BETi in animal models of HIV latency.


Assuntos
Infecções por HIV , HIV-1 , Animais , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , RNA , Fatores de Transcrição/metabolismo , Ativação Viral , Latência Viral
12.
ACS Chem Biol ; 17(9): 2595-2604, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36044633

RESUMO

Although current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells. Tool compounds ICeD-1 and ICeD-2 ("inducer of cell death-1 and 2"), optimized for potency and selectivity from screening hits, were used to deconvolute the mechanism of action using a combination of chemoproteomic, biochemical, pharmacological, and genetic approaches. We determined that these compounds function by modulating dipeptidyl peptidase 9 (DPP9) and activating the caspase recruitment domain family member 8 (CARD8) inflammasome. Efficacy of ICeD-1 and ICeD-2 was dependent on HIV-1 protease activity and synergistic with efavirenz, which promotes premature activation of HIV-1 protease at high concentrations in infected cells. This in vitro synergy lowers the efficacious cell kill concentration of efavirenz to a clinically relevant dose at concentrations of ICeD-1 or ICeD-2 that do not result in complete DPP9 inhibition. These results suggest engagement of the pyroptotic pathway as a potential approach to eliminate HIV-1 infected cells.


Assuntos
Infecções por HIV , HIV-1 , Alcinos , Benzoxazinas , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ciclopropanos , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Inflamassomos/metabolismo , Leucócitos Mononucleares , Proteínas de Neoplasias/metabolismo
13.
J Biol Chem ; 285(52): 40604-11, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20943652

RESUMO

We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Peptidomiméticos/imunologia , Vacinas contra a AIDS/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Infecções por HIV/sangue , Infecções por HIV/prevenção & controle , Haptenos/imunologia , Haptenos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptidomiméticos/farmacologia
14.
Front Microbiol ; 12: 636703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796087

RESUMO

Greater than 90% of HIV-1 proviruses are thought to be defective and incapable of viral replication. While replication competent proviruses are of primary concern with respect to disease progression or transmission, studies have shown that even defective proviruses are not silent and can produce viral proteins, which may contribute to inflammation and immune responses. Viral protein expression also has implications for immune-based HIV-1 clearance strategies, which rely on antigen recognition. Thus, sensitive assays aimed at quantifying both replication-competent proviruses and defective, yet translationally competent proviruses are needed to understand the contribution of viral protein to HIV-1 pathogenesis and determine the effectiveness of HIV-1 cure interventions. Previously, we reported a modified HIV-1 gag p24 digital enzyme-linked immunosorbent assay with single molecule array (Simoa) detection of cell-associated viral protein. Here we report a novel p24 protein enrichment method coupled with the digital immunoassay to further extend the sensitivity and specificity of viral protein detection. Immunocapture of HIV gag p24 followed by elution in a Simoa-compatible format resulted in higher protein recovery and lower background from various biological matrices and sample volumes. Quantification of as little as 1 fg of p24 protein from cell lysates from cells isolated from peripheral blood or tissues from ART-suppressed HIV participants, as well as simian-human immunodeficiency virus-infected non-human primates (NHPs), with high recovery and reproducibility is demonstrated here. The application of these enhanced methods to patient-derived samples has potential to further the study of the persistent HIV state and examine in vitro response to therapies, as well as ex vivo study of translationally competent cells from a variety of donors.

15.
SLAS Discov ; 26(5): 642-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33427012

RESUMO

Antiretroviral therapy is able to effectively control but not eradicate HIV infection, which can persist, leading to the need for lifelong therapy. The existence of latently HIV-infected cells is a major barrier to the eradication of chronic HIV infection. Histone deacetylase inhibitors (HDACis), small molecules licensed for oncology indications, have shown the ability to produce HIV transcripts in vitro and in vivo. The pharmacologic parameters that drive optimal HIV latency reversal in vivo are unknown and could be influenced by such factors as the HDACi binding kinetics, concentration of compound, and duration of exposure. This study evaluates how these parameters affect HIV latency reversal for a series of novel HDACis that differ in their enzymatic on and off rates. Varying cellular exposure, using automated washout methods of HDACi in a Jurkat cell model of HIV latency, led to the investigation of the relationship between pharmacokinetic (PK) properties, target engagement (TE), and pharmacodynamic (PD) responses. Using an automated robotic platform enabled miniaturization of a suspension cell-based washout assay that required multiple manipulations over the 48 h duration of the assay. Quantification of histone acetylation (TE) revealed that HDACis showed early peaks and differences in the durability of response between different investigated HDACis. By expanding the sample times, the shift between TE and PD, as measured by green fluorescent protein, could be fully characterized. The comprehensive data set generated by automating the assays described here was used to establish a PK/PD model for HDACi-induced HIV latency reversal.


Assuntos
Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacocinética , Modelos Teóricos , Latência Viral/efeitos dos fármacos , Automação Laboratorial , Técnicas de Cultura de Células , Células Cultivadas , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV/genética , Humanos , Células Jurkat , Replicação Viral/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 19(1): 17-20, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19036583

RESUMO

A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico , Inibidores Enzimáticos/farmacocinética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ligação Proteica
17.
Bioorg Med Chem Lett ; 19(11): 2977-80, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409780

RESUMO

We have developed a novel series of heteroaromatic BACE-1 inhibitors. These inhibitors interact with the enzyme in a unique fashion that allows for potent binding in a non-traditional paradigm. In addition to the elucidation of their binding profile, we have discovered a pH dependent effect on the binding affinity as a result of the intrinsic pK(a) of these inhibitors and the pH of the BACE-1 enzyme binding assay.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/química , Compostos Heterocíclicos/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Concentração de Íons de Hidrogênio , Ligação Proteica , Relação Estrutura-Atividade
18.
Bioorg Med Chem Lett ; 19(4): 1240-4, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19155174

RESUMO

A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at K(m) for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site approximately 13A from the ATP binding site. Preliminary data is presented for several of these compounds.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Quinazolinas/síntese química , Quinazolinas/farmacologia , Sítios de Ligação , Quinase 1 do Ponto de Checagem , Técnicas de Química Combinatória , Cristalografia por Raios X , Humanos , Conformação Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Quinazolinas/química
19.
Assay Drug Dev Technol ; 5(4): 493-500, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17767417

RESUMO

Enzyme-linked immunosorbent assays (ELISAs) are a long established and widely used assay format for drug discovery and diagnostics. They offer many advantages over homogeneous assay formats, including high sensitivity and separation (wash) steps that remove detection-interfering compounds. Many high-throughput screening assays are now performed in miniaturized formats (1,536- and 3,456-well plates) for higher throughput and lower reagent consumption. With miniaturization, separation steps in assays such as ELISA can become difficult to implement. Here we report on the implementation of the Kalypsys, Inc. (San Diego, CA) 1,536-well plate washer to enable the successful miniaturization and full automation of an ELISA that monitors ubiquitin ligase activity. The 1,536-well plate ELISA was robust and used for the high-throughput screening of a large screening collection (>1 million compounds).


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Ubiquitina-Proteína Ligases/química , Automação , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática/instrumentação , Miniaturização , Robótica
20.
SLAS Technol ; 22(5): 485-492, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28027447

RESUMO

Automated mechanism of action studies are introducing the need for tailored compound delivery, which can be challenging for standard compound management procedures. Jump dilution assays investigating inhibitor reversibility require compound delivery at specific volumes to assay specific concentrations of 10 × IC50 for each inhibitor. Creating custom-made source plates with unique compound concentrations to dispense a uniform single volume can be prohibitively slow. A broadly applicable tool that enables on-the fly dispensing of variable amounts of stock concentrations was developed using the Acoustic Transfer System (ATS). The Dynamic Transfer Modification Program (DTMP) is an integrated LabVIEW program used to automate customized volume transfers from each well based on compound identity within a given source plate. A jump dilution investigating the time-dependent inhibition of the enzyme dipeptidyl peptidase-4 (DPP4) with multiple inhibitors is described here to demonstrate the delivery of specific volumes of various compounds in a high-throughput manner. The ability to automate this process allows for the characterization of inhibitor reversibility earlier in the drug discovery process, resulting in better informed lead candidate selection.


Assuntos
Acústica , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Descoberta de Drogas/métodos , Técnicas de Diluição do Indicador , Concentração Inibidora 50
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA