Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379837

RESUMO

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Assuntos
Edição de Genes , Proteínas , Proteínas/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Sistemas CRISPR-Cas , Citosina/metabolismo
2.
Nature ; 571(7764): 275-278, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181567

RESUMO

Recently developed DNA base editing methods enable the direct generation of desired point mutations in genomic DNA without generating any double-strand breaks1-3, but the issue of off-target edits has limited the application of these methods. Although several previous studies have evaluated off-target mutations in genomic DNA4-8, it is now clear that the deaminases that are integral to commonly used DNA base editors often bind to RNA9-13. For example, the cytosine deaminase APOBEC1-which is used in cytosine base editors (CBEs)-targets both DNA and RNA12, and the adenine deaminase TadA-which is used in adenine base editors (ABEs)-induces site-specific inosine formation on RNA9,11. However, any potential RNA mutations caused by DNA base editors have not been evaluated. Adeno-associated viruses are the most common delivery system for gene therapies that involve DNA editing; these viruses can sustain long-term gene expression in vivo, so the extent of potential RNA mutations induced by DNA base editors is of great concern14-16. Here we quantitatively evaluated RNA single nucleotide variations (SNVs) that were induced by CBEs or ABEs. Both the cytosine base editor BE3 and the adenine base editor ABE7.10 generated tens of thousands of off-target RNA SNVs. Subsequently, by engineering deaminases, we found that three CBE variants and one ABE variant showed a reduction in off-target RNA SNVs to the baseline while maintaining efficient DNA on-target activity. This study reveals a previously overlooked aspect of off-target effects in DNA editing and also demonstrates that such effects can be eliminated by engineering deaminases.


Assuntos
DNA/genética , Edição de Genes/métodos , Mutagênese , Mutação , Nucleosídeo Desaminases/genética , Engenharia de Proteínas , RNA/genética , Adenina/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Citosina/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Células HEK293 , Humanos , Nucleosídeo Desaminases/metabolismo , Especificidade por Substrato , Transfecção
3.
Curr Issues Mol Biol ; 46(5): 4021-4034, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785516

RESUMO

The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research.

4.
EMBO J ; 39(22): e104741, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33058229

RESUMO

Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.


Assuntos
Citidina Desaminase/genética , Proteínas/genética , Edição de RNA , Núcleo Celular/metabolismo , Células HEK293 , Humanos , RNA/química , RNA/metabolismo , RNA Guia de Cinetoplastídeos , Transcriptoma
5.
Nat Methods ; 17(6): 600-604, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424272

RESUMO

Cytosine base editors (CBEs) offer a powerful tool for correcting point mutations, yet their DNA and RNA off-target activities have caused concerns in biomedical applications. We describe screens of 23 rationally engineered CBE variants, which reveal mutation residues in the predicted DNA-binding site can dramatically decrease the Cas9-independent off-target effects. Furthermore, we obtained a CBE variant-YE1-BE3-FNLS-that retains high on-target editing efficiency while causing extremely low off-target edits and bystander edits.


Assuntos
Proteína 9 Associada à CRISPR/genética , Citosina/metabolismo , DNA/genética , Edição de Genes/métodos , RNA/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Células HEK293 , Humanos , Mutação , Mutação Puntual
6.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174443

RESUMO

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Assuntos
Edição de Genes , Perda Auditiva , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos , Camundongos , RNA Guia de Cinetoplastídeos
7.
Development ; 146(13)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31189663

RESUMO

Epigenetic regulation, including histone-to-protamine exchanges, controls spermiogenesis. However, the underlying mechanisms of this regulation are largely unknown. Here, we report that PHF7, a testis-specific PHD and RING finger domain-containing protein, is essential for histone-to-protamine exchange in mice. PHF7 is specifically expressed during spermiogenesis. PHF7 deletion results in male infertility due to aberrant histone retention and impaired protamine replacement in elongated spermatids. Mechanistically, PHF7 can simultaneously bind histone H2A and H3; its PHD domain, a histone code reader, can specifically bind H3K4me3/me2, and its RING domain, a histone writer, can ubiquitylate H2A. Thus, our study reveals that PHF7 is a novel E3 ligase that can specifically ubiquitylate H2A through binding H3K4me3/me2 prior to histone-to-protamine exchange.


Assuntos
Histonas/metabolismo , Protaminas/metabolismo , Espermatogênese/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/genética , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Testículo/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
Biol Reprod ; 102(4): 817-827, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31916576

RESUMO

Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.


Assuntos
Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica/genética , Chaperonas Moleculares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Dano ao DNA , Feminino , Camundongos , Chaperonas Moleculares/genética
11.
Mol Reprod Dev ; 82(10): 747-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26153379

RESUMO

The ubiquitin-proteasome pathway, involved in genetic recombination and sex-chromosome silencing during meiosis, plays critical roles in the specification of germ-line stem cells and the differentiation of gametes from gonocytes. Zygote-specific proteasome assembly chaperone (ZPAC) is expressed in the early mouse embryo, where it is important for progression of the mouse maternal-to-zygotic transition. The role of ZPAC during spermatogenesis in the adult gonads, however, remains unknown. In this study, rapid amplification of cDNA ends was used to determine the Zpac cDNA sequence, a 1584-bp transcript that includes a putative 1122-bp open reading frame coding for a 373 amino acid protein. Western blot and immunohistochemistry revealed that ZPAC was specifically expressed in gonads. To further dissect the function of ZPAC during spermatogenesis, we employed PiggyBac-based RNA interference vectors for transgenesis combined with cell transplantation to deplete Zpac during spermatogenesis. This RNAi-mediate depletion in Zpac expression disrupted normal spermatogenesis from spermatogonial stem cells. Two independent yeast two-hybrid screens further revealed an interaction between ZPAC and SYCE1. Together, these data suggest that ZPAC is required for normal spermatogenesis in mice.


Assuntos
Chaperonas Moleculares/fisiologia , Proteínas Nucleares/fisiologia , Espermatogênese , Animais , Linhagem Celular , DNA Complementar , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Interferência de RNA , Espermatogênese/genética , Técnicas do Sistema de Duplo-Híbrido
12.
J Adv Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942381

RESUMO

INTRODUCTION: The Prime Editing (PE) system is a precise and versatile genome editing tool with great potential in plant breeding and plant synthetic biology. However, low PE efficiency severely restricts its application, especially in dicots. PE can introduce small tags to trace target protein or cis-element to regulate gene transcription which is an expertise superior to other gene editing tools. Owing to low efficiency, PE adaption in stably transformed Arabidopsis is lacking. OBJECTIVES: This study aimed to investigate the issue of low PE efficiency in dicots and develop systematic solutions to improve it. Currently, PE in dicots is undetectable and inconsistent, and this study seeks to address it. Split PE into several parts showed better performance in some target sites in mammal cells. We plan to discover the optimal split PE combination in dicot. METHODS: We conducted large-scale transformation experiments in dicot model plants Arabidopsis thaliana (At) and Nicotiana benthamiana (Nb) by Agrobacterium-mediated transformation with deep amplicon sequencing (0.2-0.5 million clean total reads). RESULTS: The editing efficiency decreased upon using a fused reverse transcriptase (RT) or an extended pegRNA separately and further decreased dramatically when these were used together. With the help of the pol II strategy to express PE gRNA (pegRNA), we named the most effective split PE combination as a multi-modular assembled prime editing system (mPE). mPE exhibited improved precise editing efficiency on most gene sites with various editing types, ranging from 1.3-fold to 1288.5-fold and achieved PE on some sites that could not be edited by original PE2. Especially, mPE showed superiority for multi-base insertion with an average improvement of 197.9-fold. CONCLUSION: The original PE architecture strongly inhibited the cleavage activity of Cas9. Split PE improved PE efficiency extensively and was in favor of introducing small insertions in dicot plants, indicating that different PE variants might have their own expertise.

13.
Int J Biol Macromol ; 268(Pt 2): 131785, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679258

RESUMO

To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications.


Assuntos
Resistência Microbiana a Medicamentos , Edição de Genes , Edição de Genes/métodos , Humanos , Resistência Microbiana a Medicamentos/genética , Sistemas CRISPR-Cas , Células HEK293 , Regiões Promotoras Genéticas , Puromicina/farmacologia , Animais
14.
J Biol Eng ; 18(1): 5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212799

RESUMO

Maternal secretion of recombinant proteins into chicken eggs may provide a viable approach for pharmaceutical production but remains limited by poor secretion efficiency through the membrane of oviduct cells, despite high expression levels. Here, we used site-specific integration of an EGFP fused to the OVAL gene by a rigid linker, (EAAAK)3, at the endogenous ovalbumin locus in chicken primordial germ cells to generate OVAL-E3-EGFP transgenic chickens, with transgenic chickens expressing CMV immediate enhancer/ß-actin-driven EGFP (CAG-EGFP) as a non-secreted control. In OVAL-E3-EGFP chickens, EGFP protein produced in maternal oviducts accumulates to high levels in eggs, but not in eggs of CAG-EGFP chickens. These results indicated that the secretion of foreign proteins can be substantially increased through fusion to the highly secreted endogenous ovalbumin. This study describes a basis for high yield recombinant protein expression in chicken eggs, enabling rapid and scalable production of numerous pharmaceutical proteins or metabolites.

15.
Nat Biomed Eng ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831042

RESUMO

The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.

16.
Int J Biol Macromol ; 259(Pt 2): 129232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191104

RESUMO

Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.


Assuntos
Ambrosia , Hipersensibilidade , Ambrosia/genética , Antígenos de Plantas/genética , Ecossistema , Alérgenos/genética , Alérgenos/química , Pólen/genética , Cromossomos
17.
Genome Biol ; 25(1): 51, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378658

RESUMO

The FokI catalytic domain can be fused to various DNA binding architectures to improve the precision of genome editing tools. However, evaluation of off-target effects is essential for developing these tools. We use Genome-wide Off-target analysis by Two-cell embryo Injection (GOTI) to detect low-frequency off-target editing events in mouse embryos injected with FokI-based architectures. Specifically, we test FokI-heterodimers fused with TALENs, FokI homodimers fused with RYdCas9, or FokI catalytic domains alone resulting in no significant off-target effects. These FokI genome editing systems exhibit undetectable off-target effects in mouse embryos, supporting the further development of these systems for clinical applications.


Assuntos
Edição de Genes , Genoma , Animais , Camundongos , Domínio Catalítico , Edição de Genes/métodos , Sistemas CRISPR-Cas
18.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177672

RESUMO

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Timócitos , Camundongos , Animais , Camundongos Knockout , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
19.
Cell Discov ; 10(1): 20, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378648

RESUMO

Adenine base editors (ABEs) and cytosine base editors (CBEs) enable the single nucleotide editing of targeted DNA sites avoiding generation of double strand breaks, however, the genomic features that influence the outcomes of base editing in vivo still remain to be characterized. High-throughput datasets from lentiviral integrated libraries were used to investigate the sequence features affecting base editing outcomes, but the effects of endogenous factors beyond the DNA sequences are still largely unknown. Here the base editing outcomes of ABE and CBE were evaluated in mammalian cells for 5012 endogenous genomic sites and 11,868 genome-integrated target sequences, with 4654 genomic sites sharing the same target sequences. The comparative analyses revealed that the editing outcomes of ABE and CBE at endogenous sites were substantially different from those obtained using genome-integrated sequences. We found that the base editing efficiency at endogenous target sites of both ABE and CBE was influenced by endogenous factors, including epigenetic modifications and transcriptional activity. A deep-learning algorithm referred as BE_Endo, was developed based on the endogenous factors and sequence information from our genomic datasets, and it yielded unprecedented accuracy in predicting the base editing outcomes. These findings along with the developed computational algorithms may facilitate future application of BEs for scientific research and clinical gene therapy.

20.
Comput Struct Biotechnol J ; 21: 202-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582444

RESUMO

CRISPR-mediated epigenome editing enables gene expression regulation without changing the underlying DNA sequence, and thus has vast potential for basic research and gene therapy. Effective selection of a single guide RNA (sgRNA) with high on-target efficiency and specificity would facilitate the application of epigenome editing tools. Here we performed an extensive analysis of CRISPR-mediated epigenome editing tools on thousands of experimentally examined on-target sites and established EpiCas-DL, a deep learning framework to optimize sgRNA design for gene silencing or activation. EpiCas-DL achieves high accuracy in sgRNA activity prediction for targeted gene silencing or activation and outperforms other available in silico methods. In addition, EpiCas-DL also identifies both epigenetic and sequence features that affect sgRNA efficacy in gene silencing and activation, facilitating the application of epigenome editing for research and therapy. EpiCas-DL is available at http://www.sunlab.fun:3838/EpiCas-DL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA