Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(3): 1643-1655, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38366996

RESUMO

Pathogens and pests pose significant threats to global crop productivity and plant immunity, necessitating urgent measures from researchers to prevent pathogen contamination and pest damage to crops. A natural plant-based antibacterial agent, eugenol (EUG), has demonstrated excellent antimicrobial and insect repellent capabilities, but the characteristics of volatilization and poor dissolution limit the practical application. The nanoization of pesticide formulations holds promise in the development of highly effective pesticides for antibacterial and insecticidal purposes. Herein, a eugenol-loaded nano delivery system (EUG@CMC-PGMA-CS) was synthesized using glycidyl methacrylate (GMA) as a functional monomer to connect carrier core structure carboxymethyl cellulose (CMC) with shell structure chitosan (CS), and EUG was encapsulated within the carrier. EUG@CMC-PGMA-CS demonstrated excellent leaf affinity, with minimum contact angles (CAs) of 37.83 and 70.52° on hydrophilic and hydrophobic vegetable leaf surfaces, respectively. Moreover, the maximum liquid holding capacity (LHC) of EUG@CMC-PGMA-CS on both hydrophilic and hydrophobic vegetable leaf surfaces demonstrates a noteworthy 55.24% enhancement compared to the LHC of pure EUG. The in vitro release curve of EUG@CMC-PGMA-CS exhibited an initial burst followed by stable sustained release. It is with satisfaction that the nano delivery system demonstrated exceptional antibacterial properties against S. aureus and satisfactory insecticidal efficacy against Spodoptera litura. The development of this eugenol-loaded nano delivery system holds significant potential for enhanced antibacterial and insect repellents in agriculture, paving the way for the application of volatile bioactive substances.


Assuntos
Eugenol , Repelentes de Insetos , Eugenol/farmacologia , Eugenol/química , Carboximetilcelulose Sódica/química , Sistemas de Liberação de Fármacos por Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia
2.
J Hazard Mater ; 430: 128378, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152108

RESUMO

Design of charged materials for demulsification of ionic surfactant-stabilized oil-in-water emulsions is emerging in recent years. Herein, a superwetting stainless steel mesh with Janus surface charges (Janus SSM) was prepared by respectively brush-coating polyethyleneimine/aminated carbon nanotubes (PEI/CNTs-NH2) coating and polyacrylic acid (PAA) coating on its two sides. Two demulsification mechanisms, i.e., electrostatic attraction-repulsion and electrostatic repulsion-attraction based on the synergism of two oppositely charged sides were proposed. Combined with the superwettability and optimized pore size, the Janus SSM can successfully be used to demulsify, coalesce and separate emulsions. In detail, the Janus SSM exhibited separation efficiencies of up to 99.29%, 97.12% for SDS- and DTAC-stabilized oil-in-water emulsions respectively under the electrostatic attraction-repulsion mechanism, and up to 97.10%, 98.57% under the electrostatic repulsion-attraction mechanism. The results indicated that the electrostatic attraction-repulsion mechanism proposed in this study is conductive to achieving higher efficiency in emulsion separation. Furthermore, excellent durability extend the operation life of Janus SSM. This Janus SSM, which combines opposite charges on its two sides, may advance the development of charged materials for emulsion separation.

3.
J Hazard Mater ; 403: 123620, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32798795

RESUMO

How to rapidly and efficiently separate surfactant-stabilized emulsions has been a great challenge for oil/water separation materials. In this work, a durable superwetting copper mesh with high efficiency and flux for gravity-driven emulsion separation was fabricated by subtly inlaying polydopamine/polyethyleneimine@aminated carbon nanotubes (PDA/PEI@CNTs-NH2) clusters in the mesh pores. The porous clusters with abundant cationic groups render the mesh with superwettability, submicron permeation channels and positive charges, so as to achieve strong demulsification ability. Based on the superwettability and the strong demulsification ability, the PDA/PEI@CNTs-NH2 clusters-inlayed copper mesh (PPC-CM) exhibited high separation efficiency of over 99.5% for various anionic surfactant-stabilized oil-in-water emulsions. Meanwhile, the permeation flux of PPC-CM solely driven by gravity is as high as 3946.3 L m-2 h-1. The strong demulsification ability and high permeation flux of the superwetting mesh are due to the synergistic action of charge-screening effect of -NH3+ and size-sieving effect of optimized pore size. Furthermore, the resultant mesh exhibited excellent durability that it could resist serious physical abrasion and chemical corrosion. Especially the mesh after repeated separation can recover its positive charge by a simple acid treatment. These excellent performances highlight the superwetting mesh a promising potential for sustainable separation of highly stabilized oil/water emulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA