Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502381

RESUMO

Myelin is of vital importance to the central nervous system and its disruption is related to a large number of both neurodevelopmental and neurodegenerative diseases. The differences observed between human and rodent oligodendrocytes make animals inadequate for modeling these diseases. Although developing human in vitro models for oligodendrocytes and myelinated axons has been a great challenge, 3D cell cultures derived from iPSC are now available and able to partially reproduce the myelination process. We have previously developed a human iPSC-derived 3D brain organoid model (also called BrainSpheres) that contains a high percentage of myelinated axons and is highly reproducible. Here, we have further refined this technology by applying multiple readouts to study myelination disruption. Myelin was assessed by quantifying immunostaining/confocal microscopy of co-localized myelin basic protein (MBP) with neurofilament proteins as well as proteolipid protein 1 (PLP1). Levels of PLP1 were also assessed by Western blot. We identified compounds capable of inducing developmental neurotoxicity by disrupting myelin in a systematic review to evaluate the relevance of our BrainSphere model for the study of the myelination/demyelination processes. Results demonstrated that the positive reference compound (cuprizone) and two of the three potential myelin disruptors tested (Bisphenol A, Tris(1,3-dichloro-2-propyl) phosphate, but not methyl mercury) decreased myelination, while ibuprofen (negative control) had no effect. Here, we define a methodology that allows quantification of myelin disruption and provides reference compounds for chemical-induced myelin disruption.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Axônios/metabolismo , Encéfalo/metabolismo , Técnicas de Cultura de Células/métodos , Sistema Nervoso Central/metabolismo , Humanos , Modelos Biológicos , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/análise , Proteína Proteolipídica de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Síndromes Neurotóxicas/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Organoides/metabolismo
2.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920048

RESUMO

Astrogliosis has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism, and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes as a function of age have been reported, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected in supporting a functional switch of astrocytes from neurotrophic to neurotoxic. This study aimed to explore the metabolic changes occurring in astrocytes during their activation. Astrocytes were derived from human ReN cell neural progenitors and characterized. They were activated by exposure to tumor necrosis factor alpha (TNFα) or interleukin 1ß (IL1ß) for 24 h. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics and extracellular flux analyses. ReN-derived astrocytes reactivity was observed by the modifications of genes and proteins linked to inflammation (cytokines, nuclear factor-kappa B (NFκB), signal transducers and activators of transcription (STATs)) and immune pathways (major histocompatibility complex (MHC) class I). Increased NFκB1, NFκB2 and STAT1 expression, together with decreased STAT3 expression, suggest an activation towards the detrimental pathway. Strong modifications of astrocyte cytoskeleton were observed, including a glial fibrillary acidic protein (GFAP) decrease. Astrogliosis was accompanied by changes in energy metabolism characterized by increased glycolysis and lactate release. Increased glycolysis is reported for the first time during human astrocyte activation. Astrocyte activation is strongly tied to energy metabolism, and a possible association between NFκB signaling and/or MHC class I pathway and glycolysis is suggested.


Assuntos
Astrócitos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Gliose/tratamento farmacológico , Gliose/genética , Gliose/patologia , Glicólise/genética , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Neurogênese/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
3.
Arch Toxicol ; 93(9): 2635-2644, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324950

RESUMO

A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Academies entitled "Toxicity testing in the 21st Century: a vision and strategy". This new vision encourages the use of in vitro and in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different genes to various drugs (amiodarone: 0.312-2.5 [Formula: see text]; cyclosporine A: 0.25-2 [Formula: see text]; chlorpromazine: 0.625-10 [Formula: see text]; diazepam: 1-8 [Formula: see text]; carbamazepine: 6.25-50 [Formula: see text]) is studied in 3D aggregate brain cell cultures. Genes' responsiveness is quantified and ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level at which the response is significantly different from a control, the model-based approach allows a principled estimation of the LOEC and of its uncertainty. The Box-Cox transform both sides approach is adopted to deal with heteroscedastic and/or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Different inferential procedures to estimate the Box-Cox coefficient, and to obtain confidence intervals for the log-logistic curve parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates for in vitro biomarkers of toxicity.


Assuntos
Alternativas aos Testes com Animais/métodos , Encéfalo/efeitos dos fármacos , Modelos Biológicos , Síndromes Neurotóxicas/metabolismo , Testes de Toxicidade/métodos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Nível de Efeito Adverso não Observado
4.
Toxicol Appl Pharmacol ; 354: 3-6, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447839

RESUMO

This consensus statement voices the agreement of scientific stakeholders from regulatory agencies, academia and industry that a new framework needs adopting for assessment of chemicals with the potential to disrupt brain development. An increased prevalence of neurodevelopmental disorders in children has been observed that cannot solely be explained by genetics and recently pre- and postnatal exposure to environmental chemicals has been suspected as a causal factor. There is only very limited information on neurodevelopmental toxicity, leaving thousands of chemicals, that are present in the environment, with high uncertainty concerning their developmental neurotoxicity (DNT) potential. Closing this data gap with the current test guideline approach is not feasible, because the in vivo bioassays are far too resource-intensive concerning time, money and number of animals. A variety of in vitro methods are now available, that have the potential to close this data gap by permitting mode-of-action-based DNT testing employing human stem cells-derived neuronal/glial models. In vitro DNT data together with in silico approaches will in the future allow development of predictive models for DNT effects. The ultimate application goals of these new approach methods for DNT testing are their usage for different regulatory purposes.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/normas , Toxicologia/normas , Fatores Etários , Alternativas aos Testes com Animais/normas , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Consenso , Difusão de Inovações , Humanos , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Formulação de Políticas , Reprodutibilidade dos Testes , Medição de Risco , Participação dos Interessados , Testes de Toxicidade/métodos , Toxicologia/métodos
5.
Anal Bioanal Chem ; 410(26): 6733-6749, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30094790

RESUMO

The aim of the present study was to establish the developmental profile of metabolic changes of 3D aggregating brain cell cultures by 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. The histotypic 3D brain aggregate, containing all brain cell types, is an excellent model for mechanistic studies including OMICS analysis; however, their metabolic profile has not been yet fully investigated. Chemometric analysis revealed a clear separation of samples from the different maturation time points. Metabolite concentration evolutions could be followed and revealed strong and various metabolic alterations. The strong metabolite evolution emphasizes the brain modeling complexity during maturation, possibly reflecting physiological processes of brain tissue development. The small observed intra- and inter-experimental variabilities show the robustness of the combination of 1H-HR-MAS NMR and 3D brain aggregates, making it useful to investigate mechanisms of toxicity that will ultimately contribute to improve predictive neurotoxicology. Graphical Abstract ᅟ.


Assuntos
Encéfalo/metabolismo , Metaboloma , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Encéfalo/citologia , Encéfalo/embriologia , Células Cultivadas , Estudos Longitudinais , Ratos , Reprodutibilidade dos Testes
6.
JMIR Res Protoc ; 13: e50300, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236630

RESUMO

BACKGROUND: Chemicals are not required to be tested systematically for their neurotoxic potency, although they may contribute to the development of several neurological diseases. The absence of systematic testing may be partially explained by the current Organisation for Economic Co-operation and Development (OECD) Test Guidelines, which rely on animal experiments that are expensive, laborious, and ethically debatable. Therefore, it is important to understand the risks to exposed workers and the general population exposed to domestic products. In this study, we propose a strategy to test the neurotoxicity of solvents using the commonly used glycol ethers as a case study. OBJECTIVE: This study aims to provide a strategy that can be used by regulatory agencies and industries to rank solvents according to their neurotoxicity and demonstrate the use of toxicokinetic modeling to predict air concentrations of solvents that are below the no observed adverse effect concentrations (NOAECs) for human neurotoxicity determined in in vitro assays. METHODS: The proposed strategy focuses on a complex 3D in vitro brain model (BrainSpheres) derived from human-induced pluripotent stem cells (hiPSCs). This model is accompanied by in vivo, in vitro, and in silico models for the blood-brain barrier (BBB) and in vitro models for liver metabolism. The data are integrated into a toxicokinetic model. Internal concentrations predicted using this toxicokinetic model are compared with the results from in vivo human-controlled exposure experiments for model validation. The toxicokinetic model is then used in reverse dosimetry to predict air concentrations, leading to brain concentrations lower than the NOAECs determined in the hiPSC-derived 3D brain model. These predictions will contribute to the protection of exposed workers and the general population with domestic exposures. RESULTS: The Swiss Centre for Applied Human Toxicology funded the project, commencing in January 2021. The Human Ethics Committee approval was obtained on November 16, 2022. Zebrafish experiments and in vitro methods started in February 2021, whereas recruitment of human volunteers started in 2022 after the COVID-19 pandemic-related restrictions were lifted. We anticipate that we will be able to provide a neurotoxicity testing strategy by 2026 and predicted air concentrations for 6 commonly used propylene glycol ethers based on toxicokinetic models incorporating liver metabolism, BBB leakage parameters, and brain toxicity. CONCLUSIONS: This study will be of great interest to regulatory agencies and chemical industries needing and seeking novel solutions to develop human chemical risk assessments. It will contribute to protecting human health from the deleterious effects of environmental chemicals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50300.

7.
Stem Cell Reports ; 19(5): 604-617, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38670111

RESUMO

Cell culture technology has evolved, moving from single-cell and monolayer methods to 3D models like reaggregates, spheroids, and organoids, improved with bioengineering like microfabrication and bioprinting. These advancements, termed microphysiological systems (MPSs), closely replicate tissue environments and human physiology, enhancing research and biomedical uses. However, MPS complexity introduces standardization challenges, impacting reproducibility and trust. We offer guidelines for quality management and control criteria specific to MPSs, facilitating reliable outcomes without stifling innovation. Our fit-for-purpose recommendations provide actionable advice for achieving consistent MPS performance.


Assuntos
Técnicas de Cultura de Células , Humanos , Reprodutibilidade dos Testes , Técnicas de Cultura de Células/métodos , Controle de Qualidade , Organoides/citologia , Sistemas Microfisiológicos
8.
Toxicol In Vitro ; 98: 105826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615723

RESUMO

Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Transcriptoma , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Transcriptoma/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Cultivadas
9.
Theor Biol Med Model ; 10: 19, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497233

RESUMO

BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 µM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.


Assuntos
Encéfalo/citologia , Modelos Teóricos , Processos Estocásticos , Células Cultivadas , Cadeias de Markov
10.
Front Pharmacol ; 14: 1248882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745076

RESUMO

For ethical, economical, and scientific reasons, animal experimentation, used to evaluate the potential neurotoxicity of chemicals before their release in the market, needs to be replaced by new approach methodologies. To illustrate the use of new approach methodologies, the human induced pluripotent stem cell-derived 3D model BrainSpheres was acutely (48 h) or repeatedly (7 days) exposed to amiodarone (0.625-15 µM), a lipophilic antiarrhythmic drug reported to have deleterious effects on the nervous system. Neurotoxicity was assessed using transcriptomics, the immunohistochemistry of cell type-specific markers, and real-time reverse transcription-polymerase chain reaction for various genes involved in the lipid metabolism. By integrating distribution kinetics modeling with neurotoxicity readouts, we show that the observed time- and concentration-dependent increase in the neurotoxic effects of amiodarone is driven by the cellular accumulation of amiodarone after repeated dosing. The development of a compartmental in vitro distribution kinetics model allowed us to predict the change in cell-associated concentrations in BrainSpheres with time and for different exposure scenarios. The results suggest that human cells are intrinsically more sensitive to amiodarone than rodent cells. Amiodarone-induced regulation of lipid metabolism genes was observed in brain cells for the first time. Astrocytes appeared to be the most sensitive human brain cell type in vitro. In conclusion, assessing readouts at different molecular levels after the repeat dosing of human induced pluripotent stem cell-derived BrainSpheres in combination with the compartmental modeling of in vitro kinetics provides a mechanistic means to assess neurotoxicity pathways and refine chemical safety assessment for humans.

11.
Mol Neurobiol ; 60(1): 84-97, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36223047

RESUMO

Astrocyte reaction is a complex cellular process involving astrocytes in response to various types of CNS injury and a marker of neurotoxicity. It has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes have been reported with age, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected. However, the relationship between energy metabolism and astrocyte reactivity in the context of neurotoxicity is not known. We hypothesized that changes in energy metabolism of astrocytes will be coupled to their activation by xenobiotics. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics, and extracellular flux analyses after 24 h of exposure of human ReN-derived astrocytes to digoxin (1-10 µM) or TNFα (30 ng/ml) used as a positive control. Strong astrocytic reaction was observed, accompanied by increased glycolysis at low concentrations of digoxin (0.1 and 0.5 µM) and after TNFα exposure, suggesting that increased glycolysis may be a common feature of reactive astrocytes, independent of the triggering molecule. In conclusion, whether astrocyte activation is triggered by cytokines or a xenobiotic, it is strongly tied to energy metabolism in human ReN-derived astrocytes. Increased glycolysis might be considered as an endpoint to detect astrocyte activation by potentially neurotoxic compounds in vitro. Finally, ReN-derived astrocytes may help to decipher mechanisms of neurotoxicity in ascertaining the ability of chemicals to directly target astrocytes.


Assuntos
Astrócitos , Digoxina , Humanos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Digoxina/farmacologia , Metabolismo Energético , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas
12.
Toxicol In Vitro ; 81: 105333, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182771

RESUMO

Most OECD guidelines for chemical risk assessment include tests performed on animals, raising financial, ethical and scientific concerns. Thus, the development of human-based models for toxicity testing is highly encouraged. Here, we propose an in vitro multi-organ strategy to assess the toxicity of chemicals. Human induced pluripotent stem cells (hiPSCs)-derived models of the brain, blood-brain barrier, kidney, liver and vasculature were generated and exposed to paraquat (PQ), a widely employed herbicide with known toxic effects in kidneys and brain. The models showed differential cytotoxic sensitivity to PQ after acute exposure. TempO-Seq analysis with a set of 3565 probes revealed the deregulation of oxidative stress, unfolded protein response and estrogen receptor-mediated signaling pathways, in line with the existing knowledge on PQ mechanisms of action. The main advantages of this strategy are to assess chemical toxicity on multiple tissues/organs in parallel, exclusively in human cells, eliminating the interspecies bias, allowing a better evaluation of the differential sensitivity of the models representing the diverse organs, and increasing the chance to identify toxic compounds. Furthermore, although we focused on the mechanisms of action of PQ shared by the different models, this strategy would also allow for organ-specific toxicity testing, by including more cell type-specific probes for TempO-Seq analyses. In conclusion, we believe this strategy will participate in the further improvement of chemical risk assessment for human health.


Assuntos
Herbicidas , Células-Tronco Pluripotentes Induzidas , Animais , Herbicidas/metabolismo , Herbicidas/toxicidade , Humanos , Fígado/metabolismo , Estresse Oxidativo , Paraquat/toxicidade
13.
iScience ; 23(10): 101633, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33103073

RESUMO

Glioblastoma is a very aggressive primary brain tumor in adults, with very low survival rates and no curative treatments. The high failure rate of drug development for this cancer is linked to the high-cost, time-consuming, and inefficient models used to study the disease. Advances in stem cell and in vitro cultures technologies are promising, however, and here we present the advantages and limitations of available organotypic culture models and discuss their possible applications for studying glioblastoma.

14.
Front Cell Neurosci ; 14: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153365

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat depression during pregnancy. Various concerns have been raised about the possible effects of these drugs on fetal development. Current developmental neurotoxicity (DNT) testing conducted in rodents is expensive, time-consuming, and does not necessarily represent human pathophysiology. A human, in vitro testing battery to cover key events of brain development, could potentially overcome these challenges. In this study, we assess the DNT of paroxetine-a widely used SSRI which has shown contradictory evidence regarding effects on human brain development using a versatile, organotypic human induced pluripotent stem cell (iPSC)-derived brain model (BrainSpheres). At therapeutic blood concentrations, which lie between 20 and 60 ng/ml, Paroxetine led to an 80% decrease in the expression of synaptic markers, a 60% decrease in neurite outgrowth and a 40-75% decrease in the overall oligodendrocyte cell population, compared to controls. These results were consistently shown in two different iPSC lines and indicate that relevant therapeutic concentrations of Paroxetine induce brain cell development abnormalities which could lead to adverse effects.

15.
J Neuroinflammation ; 6: 15, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19422681

RESUMO

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos/imunologia , Doenças Desmielinizantes , Encefalite , PPAR beta/agonistas , Tiazóis/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/citologia , Células Cultivadas , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/metabolismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , PPAR beta/genética , Ratos , Tiazóis/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Toxicol In Vitro ; 60: 281-292, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176792

RESUMO

Trimethyltin is an organometallic compound, described to be neurotoxic and to trigger neuroinflammation and oxidative stress. Previous studies associated TMT with the perturbation of mitochondrial function, or neurotransmission. However, the mechanisms of toxicity may differ depending on the duration of exposure and on the stage of maturation of brain cells. This study aim at elucidating whether the toxicity pathways triggered by a known neurotoxicant (TMT) differs depending on cell maturation stage or duration of exposure. To this end omics profiling of immature and differentiated 3D rat brain cell cultures exposed for 24 h or 10 days (10-d) to 0.5 and 1 µM of TMT was performed to better understand the underlying mechanisms of TMT associated toxicity. Proteomics identified 55 and 17 proteins affected by acute TMT treatment in immature and differentiated cultures respectively, while 10-day treatment altered 96 proteins in immature cultures versus 353 in differentiated. The results suggest different sensitivity to TMT depending on treatment duration and cell maturation. In accordance with known TMT mechanisms oxidative stress and neuroinflammation was observed after 10-d treatment at both maturation stages, whereas the neuroinflammatory process was more prominent in differentiated cultures than in the immature, no development-dependent difference could be detected for oxidative stress or synaptic neurodegeneration. Pathway analysis revealed that both vesicular trafficking and the synaptic machinery were strongly affected by 10-d TMT treatment in both maturation stages, as was GABAergic and glutamatergic neurotransmission. This study shows that omics approaches combined with pathway analysis constitutes an improved tool-set in elucidating toxicity mechanisms.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Compostos de Trimetilestanho/toxicidade , Animais , Técnicas de Cultura de Células , Células Cultivadas , Embrião de Mamíferos , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Ratos Sprague-Dawley
17.
ALTEX ; 36(3): 506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329255

RESUMO

In this manuscript, which appeared in ALTEX 35 , 306-352 ( doi:10.14573/altex.1712081 ), the Acknowledgements should read: This work was supported by the Doerenkamp-Zbinden Foundation, EFSA, the BMBF, JPI-NutriCog-Selenius, and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

19.
ALTEX ; 35(3): 306-352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29485663

RESUMO

Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).


Assuntos
Alternativas aos Testes com Animais , Guias como Assunto , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/métodos , Animais , Educação , Humanos , Medição de Risco , Testes de Toxicidade/tendências
20.
Rev Environ Health ; 21(2): 105-17, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16898674

RESUMO

The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.


Assuntos
Exposição Ambiental/efeitos adversos , Chumbo/toxicidade , Mercúrio/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA