Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(2): 271-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37974360

RESUMO

Murine exercise models are developed to study the molecular and cellular mechanisms regulating muscle mass. A progressive weighted wheel running model, named 'PoWeR', was previously developed to serve as a more translatable alternative to involuntary resistance-type exercise models in rodents, such as synergist ablation. However, mice still run great distances despite the added resistance as evidenced by a large glycolytic-to-oxidative shift in muscle fibre type. Thus, PoWeR reflects a blended resistance/endurance model. In an attempt to bias PoWeR further towards resistance-type exercise, we developed a novel heavy PoWeR model (hPoWeR) utilizing higher wheel loads (max of 12.5 g vs 6 g). Adult male C57BL/6 mice voluntarily performed an 8-week progressive loading protocol (PoWeR or hPoWeR). Running distance peaked at ∼5-6 km day-1 in both treatments and was maintained by PoWeR mice, but declined in the hPoWeR mice as load increased beyond 7.5 g. Peak isometric force of the gastrocnemius-soleus-plantaris complex tended to increase in wheel running treatments. Soleus mass increased by 19% and 24% in PoWeR and hPoWeR treatments, respectively, and plantaris fibre cross-sectional area was greater in hPoWeR, compared to PoWeR. There were fewer glycolytic and more oxidative fibres in the soleus and plantaris muscles in the PoWeR treatment, but not hPoWeR. Collectively, these data suggest hPoWeR may modestly alter skeletal muscle supporting the aim of better reflecting typical resistance training adaptations, in line with decreased running volume and exposure to higher resistance. Regardless, PoWeR remains an effective hypertrophic concurrent training model in mice.


Assuntos
Condicionamento Físico Animal , Treinamento Resistido , Camundongos , Masculino , Animais , Humanos , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Condicionamento Físico Animal/fisiologia
2.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224639

RESUMO

The purpose of this investigation was to demonstrate that muscle fiber mechanics can be assessed on micro-biopsies obtained from human medial gastrocnemii. Three micro-biopsy samples were collected from female dancers (n=15). Single fibers and fiber bundles were isolated and passively stretched from 2.4 to 3.0 µm at 0.015 and 0.04 µm s-1 (n=50 fibers total) and in five increments at 0.12 µm s-1 (n=42 fibers total). Muscle fibers were then activated isometrically at 2.4 µm (n=4 fibers total) and 3.0 µm (n=3 fibers total). Peak stress and steady-state stress were significantly greater (P<0.0001) after stretching at 0.04 µm s-1 than at 0.015 µm s-1. Furthermore, peak stresses and steady-state stresses increased non-linearly with fiber length (P<0.0001). We conclude that active and passive muscle fiber mechanics can be investigated using tissue from micro-biopsies.


Assuntos
Fibras Musculares Esqueléticas , Biópsia , Feminino , Humanos
3.
J Strength Cond Res ; 36(3): 633-640, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180185

RESUMO

ABSTRACT: Travis, SK, Mujika, I, Zwetsloot, KA, Gentles, JA, Stone, MH, and Bazyler, CD. The effects of 3 vs. 5 days of training cessation on maximal strength. J Strength Cond Res 36(3): 633-640, 2022-The purpose of this study was to compare the effects of 3 vs. 5 days of training cessation on body composition, perceived recovery and stress state, and maximal strength. Nineteen strength-trained athletes (23.8 ± 4.1 year; 90.8 ± 20.7 kg; 174.2 ± 7.3 cm) completed a powerlifting specific 4-week training block followed by either 3 or 5 days of training cessation. During the 4-week training block, athletes were trained 3 days per week, performing 3-4 movements that included at least 2-3 competition lifts per session while performing 4-5 sets of 3-5 repetitions with intensity ranging from 75 to 100% 1 repetition maximum (1RM). Body composition, psychometric measures, upper-body maximal strength, and lower-body maximal strength were assessed before (T1) and after 4 weeks of training (T2) and at 3 or 5 days of training cessation (T3). The alpha level was set at p < 0.05. After the 4-week training block (T1 to T2), trivial significant increases in body mass (p = 0.016, Hedge's g = 0.04) and bench press 1RM (p = 0.01, g = 0.16) were observed, as well as small significant increases in back squat 1RM (p < 0.001, g = 0.23), deadlift 1RM (p = 0.003, g = 0.20), powerlifting total (p < 0.001, g = 0.21), and Wilks Score (p < 0.001, g = 0.27). There were no significant differences between groups for isometric back squat performance, psychometric measures, and body composition after training cessation (T2-T3). However, small significant decreases in isometric bench press performance were observed after 5 days (p < 0.001, g = 0.16), but not 3 days of training cessation. The results of this study suggest maximal lower-body strength can be preserved during 3 and 5 days of training cessation, but maximal upper-body strength is only preserved for 3 days after 4 weeks of strength training in athletes.


Assuntos
Força Muscular , Treinamento Resistido , Atletas , Composição Corporal , Terapia por Exercício , Humanos , Músculo Esquelético , Treinamento Resistido/métodos
4.
J Appl Biomech ; 37(6): 547-555, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788742

RESUMO

The purpose of this investigation was to elucidate whether ankle joint stretch-shortening cycle performance, isometric and isokinetic plantarflexion strength, and maximal Achilles tendon force and elongation differ between dancers, endurance runners, and untrained controls. To differentiate between dancers, endurance runners, and controls, the authors measured maximal Achilles tendon force and elongation during isometric ramp contractions with ultrasonic imaging, maximal isometric and isokinetic plantarflexion strength with dynamometry, and stretch-shortening cycle function during countermovement hopping and 30-cm drop hopping with a custom-designed sled. The Achilles tendon of dancers elongated significantly (P ≤ .05) more than runners and controls. Dancers were significantly stronger than controls during isometric contractions at different ankle angles. Concentric and eccentric strength during isokinetic contractions at 60°·s-1 and 120°·s-1 was significantly higher in dancers and runners than controls. Dancers hopped significantly higher than runners and controls during hopping tasks. Dancers also possessed significantly greater countermovement hop relative peak power, drop hop relative impulse, and drop hop relative peak power than controls. Finally, dancers reached significantly greater velocities during countermovement hops than runners and controls. Our findings suggest dancing and running require or likely enhance plantarflexion strength. Furthermore, dancing appears to require and enhance ankle joint stretch-shortening cycle performance and tendon elongation.


Assuntos
Tendão do Calcâneo , Dança , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo , Humanos , Contração Isométrica , Músculo Esquelético , Tendões
5.
J Musculoskelet Neuronal Interact ; 19(4): 389-395, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789290

RESUMO

The aim of this study was to examine bone, muscle, strength and stretch-shortening cycle (SSC) performance in young and elderly individuals with an ankle model to elucidate potential effects of ageing that have been suggested to influence fall risk. Moderately active young (n=10; age=22.3±1.3 yrs) and elderly (n=8; age=67.5±3.3 yrs) males completed a peripheral quantitative computed tomography scan on the dominant lower leg, maximal voluntary isometric plantarflexions (MVIP) and SSC tasks: a countermovement hop and drop hops from three different heights. Bone stress-strain index at 14% of the lower leg and muscle density, muscle cross-sectional area and muscle+bone cross-sectional area at 66% of the lower leg were all significantly greater (p≤0.05) in younger males than elderly males. Younger males also had significantly greater rate of force development and peak force during the MVIP when compared to the elderly. Younger males achieved significantly higher forces, velocities and hop heights during all SSC tasks than elderly males. Such information provides support for greater specificity in exercise interventions that prevent lower leg morphological and functional decrements in the ageing population.


Assuntos
Envelhecimento/fisiologia , Densidade Óssea/fisiologia , Contração Isométrica/fisiologia , Movimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Fatores Etários , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
6.
Brain Behav Immun ; 39: 204-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24055627

RESUMO

Adaptogens modulate intracellular signaling and increase expression of heat shock protein 72 (HSP72). Rhodiola rosea (RR) is a medicinal plant with demonstrated adaptogenic properties. The purpose of this study was to measure the influence of RR supplementation on exercise-induced muscle damage, delayed onset of muscle soreness (DOMS), plasma cytokines, and extracellular HSP72 (eHSP72) in experienced runners completing a marathon. Experienced marathon runners were randomized to RR (n=24, 6 female, 18 male) or placebo (n=24, 7 female, 17 male) groups and under double-blinded conditions ingested 600mg/day RR extract or placebo for 30days prior to, the day of, and seven days post-marathon. Blood samples were collected, and vertical jump and DOMS assessed the day before, 15min post- and 1.5h post-marathon. DOMS was also assessed for seven days post-marathon. Marathon race performance did not differ between RR and placebo groups (3.87±0.12h and 3.93±0.12h, respectively, p=0.722). Vertical jump decreased post-marathon (time effect, p<0.001) with no difference between groups (interaction effect, p=0.673). Post-marathon DOMS increased significantly (p<0.001) but the pattern of change did not differ between groups (p=0.700). Myoglobin (Mb), creatine phosphokinase (CPK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin (IL)-6, IL-8, IL-10, monocyte chemotactic protein-1 (MCP-1), granulocyte-colony-stimulating factor (G-CSF), C-reactive protein (CRP), and eHSP72 all increased post-marathon (all p<0.001), with no group differences over time (all p>0.300). In conclusion, RR supplementation (600mg/day) for 30days before running a marathon did not attenuate the post-marathon decrease in muscle function, or increases in muscle damage, DOMS, eHSP72, or plasma cytokines in experienced runners.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/lesões , Mialgia/tratamento farmacológico , Fitoterapia , Rhodiola , Adulto , Creatina Quinase/sangue , Método Duplo-Cego , Feminino , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Inflamação/sangue , Leucócitos/metabolismo , Masculino , Mialgia/sangue , Mioglobina/sangue , Extratos Vegetais/uso terapêutico , Corrida/fisiologia
7.
Nutr J ; 12: 40, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23565815

RESUMO

BACKGROUND: Long chain omega-3 fatty acids from fish oils (O3) are known to have beneficial effects on a number of vascular risk factors in at-risk populations. The effects of a highly bioavailable emulsified preparation on an overweight young adult population are less well known. METHODS: Young adults, age 18-30, with body mass indices (BMIs) greater than 23 (average = 28.1) were administered 1.7 g of O3 per day (N = 30) or safflower oil placebo (N = 27) in an emulsified preparation (Coromega, Inc.) for 4 weeks in a double-blind randomized design. Blood was drawn and anthropometric measurements taken before and after dosing. Hemodynamic measures (central pulse wave velocity, augmentation index, and aortic systolic blood pressure), inflammatory cytokines (IL-6, IL-8, IL-10, and tumor necrosis factor-α), red blood cell and plasma phospholipid fatty acid profiles, fasting serum lipids, glucose, and C-reactive protein were measured. RESULTS: Red cell and plasma phospholipid eicosapentaenoic acid and docosahexaenoic acid concentrations increased over the four weeks of dosing in the O3 group. Dosing with O3 did not affect central pulse wave velocity, augmentation index, or aortic systolic blood pressure. None of the five American Heart Association metabolic syndrome components improved over the dosing period. None of the inflammatory cytokines, C-reactive protein, or lipids (total or LDL cholesterol) improved over the dosing period. CONCLUSIONS: No salutary effects of O3 were observed in hemodynamic, metabolic syndrome criteria or inflammatory markers as a result of this relatively short period of administration in this relatively overweight, but healthy young adult cohort.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Inflamação/sangue , Síndrome Metabólica/sangue , Adolescente , Adulto , Glicemia/metabolismo , Pressão Sanguínea , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Colesterol/sangue , Ácidos Docosa-Hexaenoicos/sangue , Método Duplo-Cego , Ácido Eicosapentaenoico/sangue , Jejum , Feminino , Humanos , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Masculino , Fosfolipídeos/sangue , Óleo de Cártamo/administração & dosagem , Resultado do Tratamento , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
8.
J Sports Sci ; 31(5): 488-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23121475

RESUMO

The purpose of this investigation was to examine the effects of cluster set configurations on power clean technique. Ten male, recreational weightlifters performed three sets of six repetitions at 80% of one repetition max with 0 (P0), 20 (P20) or 40 seconds (P40) inter-repetition rest. During the first and second set of P0, the catch and first pull were in a more forward position during repetition 6 as compared to repetition 1, respectively. During the second set of P40, differences in horizontal displacement were found between repetitions 1 and 6 for the second pull and the loop. During the third set of P40, differences in horizontal displacement were found between repetitions 1 and 6 for the first pull, transition, and beginning of the second pull. No differences in horizontal displacement were found between repetitions 1 and 6 during P20. During each set of P0, vertical displacement decreased between repetitions 1 and 6 (1.02 ± 0.07 m vs. 0.94 ± 0.06 m; Mean ± s). Cluster set configurations led to the maintenance of vertical displacement throughout all sets. The results demonstrate cluster set configurations with greater than 20 seconds inter-repetition rest maintain weightlifting technique to a greater extent than a traditional set configuration.


Assuntos
Desempenho Atlético/fisiologia , Movimento/fisiologia , Força Muscular , Músculo Esquelético/fisiologia , Treinamento Resistido , Análise e Desempenho de Tarefas , Levantamento de Peso/fisiologia , Adulto , Humanos , Masculino , Descanso , Adulto Jovem
9.
Sports Med Health Sci ; 5(1): 2-9, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994170

RESUMO

Muscle fibers are multinucleated, and muscle fiber nuclei (myonuclei) are believed to be post-mitotic and are typically situated near the periphery of the myofiber. Due to the unique organization of muscle fibers and their nuclei, the cellular and molecular mechanisms regulating myofiber homeostasis in unstressed and stressed conditions (e.g., exercise) are unique. A key role myonuclei play in regulating muscle during exercise is gene transcription. Only recently have investigators had the capability to identify molecular changes at high resolution exclusively in myonuclei in response to perturbations in vivo. The purpose of this review is to describe how myonuclei modulate their transcriptome, epigenetic status, mobility and shape, and microRNA expression in response to exercise in vivo. Given the relative paucity of high-fidelity information on myonucleus-specific contributions to exercise adaptation, we identify specific gaps in knowledge and provide perspectives on future directions of research.

10.
Front Sports Act Living ; 5: 1168731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139301

RESUMO

The immune system is critical in defending against infection from pathogenic microorganisms. Individuals with weakened immune systems, such as the elderly, are more susceptible to infections and developing autoimmune and inflammatory diseases. The gut microbiome contains a plethora of bacteria and other microorganisms, which collectively plays a significant role in immune function and homeostasis. Gut microbiota are considered to be highly influential on host health and immune function. Therefore, dysbiosis of the microbiota could be a major contributor to the elevated incidence of multiple age-related pathologies. While there seems to be a general consensus that the composition of gut microbiota changes with age, very little is known about how diet and exercise might influence the aging microbiome. Here, we examine the current state of the literature regarding alterations to the gut microbiome as hosts age, drawing particular attention to the knowledge gaps in addressing how diet and exercise influence the aging microbiome. Further, we will demonstrate the need for more controlled studies to investigate the roles that diet and exercise play driving the composition, diversity, and function of the microbiome in an aging population.

11.
Biogerontology ; 13(4): 383-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22534744

RESUMO

Aged skeletal muscle displays increased fibrosis and impaired regeneration. While it is not well characterized how skeletal muscle fibroblasts contribute to these phenomena, transforming growth factor-ß1 (TGF-ß1) and Delta/Notch signaling have been implicated to influence muscle regeneration. In this study, a unique combination of aging phenotypes is identified in differentiating fibroblasts (myofibroblasts), proliferating fibroblasts, and muscle precursor cells (MPCs) that characterize an impaired regenerative potential observed in aged skeletal muscle. Using a novel dual-isolation technique, that isolates fibroblasts and MPCs from the same rat skeletal muscle sample, and cell culture conditions of 5 % O(2) and 5 % CO(2), we report for the first time that myofibroblasts from 32-mo-old skeletal muscle, compared to 3-mo-old, display increased levels of mRNA for the essential extracellular matrix (ECM) genes, collagen 4α1 (83 % increase), collagen 4α2 (98 % increase), and laminin 2 (113 % increase), as well as increased levels of mRNA for the inflammatory markers, interleukin-6 (4.3-fold increase) and tumor necrosis factor α (3.2-fold increase), and TGF-ß1 (84 % increase), whose protein controls proliferation and differentiation. Additionally, we demonstrate that proliferating fibroblasts from 32-mo-old skeletal muscle display increased levels of mRNA for the Notch ligand, Delta 1 (≥2.0-fold increase). Together, these findings suggest that increased expression of ECM and inflammatory genes in myofibroblasts from 32-mo-old skeletal muscle may contribute to the fibrogenic phenotype that impairs regeneration in aged skeletal muscle. Furthermore, we believe the novel dual-isolation technique developed here may be useful in studies that investigate communications among MPCs, fibroblasts, and myofibroblasts in skeletal muscle.


Assuntos
Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Músculo Esquelético/citologia , Miofibroblastos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Células-Tronco/metabolismo , Animais , Separação Celular/métodos , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/genética , Fibroblastos/citologia , Inflamação/genética , Interleucina-6/metabolismo , Laminina/metabolismo , Masculino , Modelos Animais , Músculo Esquelético/metabolismo , Miofibroblastos/citologia , Fatores de Regulação Miogênica/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Notch/metabolismo , Células-Tronco/citologia , Transcrição Gênica , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Eur J Appl Physiol ; 112(8): 3141-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22215288

RESUMO

The purpose of this study was to examine the effects of inter-repetition rest (IRR) on ratings of perceived exertion (RPE) in the power clean exercise in a multiple set protocol using peak power as an indication of fatigue. Ten resistance-trained males participated in four testing sessions which consisted of determination of a one repetition maximum (1RM) in the power clean exercise (session 1) and performance of three sets of six repetitions at 80% of 1RM with 0 (P0), 20 (P20), or 40 s (P40) IRR (sessions 2-4). Fatigue during all three conditions was indicated by a significant decrease in power of 9.0% (P0), 3.0% (P20) and 2.1% (P40), respectively. Significant difference in the rate of power decrease in P40 indicates less fatigue in comparison to P0 and P20. P40 resulted in a significantly lower RPE compared to P0 and P20 (7.43 ± 0.34, 6.46 ± 0.47, and 5.30 ± 0.55, respectively). RPE increased significantly (p ≤ 0.01) within each set (5.26 ± 0.37, 6.46 ± 0.44, and 7.46 ± 0.53; sets 1, 2, and 3, respectively). Significant difference in average RPE between the conditions indicates that RPE is not a determinant of intensity (% of 1RM) but the rate of fatigue (decreases in peak power). In addition, the fact that RPE increased between sets 1, 2 and 3 during all conditions support the same conclusion. The results demonstrate that increasing IRR in power clean training decreases the perception of effort and is inversely related to the rate of fatigue.


Assuntos
Contração Muscular , Fadiga Muscular , Força Muscular , Músculo Esquelético/fisiologia , Percepção , Treinamento Resistido , Levantamento de Peso , Adulto , Análise de Variância , Fenômenos Biomecânicos , Humanos , Masculino , Recuperação de Função Fisiológica , Fatores de Tempo , Adulto Jovem
13.
J Strength Cond Res ; 26(4): 883-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22228112

RESUMO

The effect of interrepetition rest (IRR) periods on power output during performance of multiple sets of power cleans is unknown. It is possible that IRR periods may attenuate the decrease in power output commonly observed within multiple sets. This may be of benefit for maximizing improvements in power with training. This investigation involved 10 college-aged men with proficiency in weightlifting. The subjects performed 3 sets of 6 repetitions of power cleans at 80% of their 1 repetition maximum with 0 (P0), 20 (P20), or 40 seconds (P40) of IRR. Each protocol (P0, P20, P40) was performed in a randomized order on different days each separated by at least 72 hours. The subjects performed the power cleans while standing on a force plate with 2 linear position transducers attached to the bar. Peak power, force, and velocity were obtained for each repetition and set. Peak power significantly decreased by 15.7% during P0 in comparison with a decrease of 5.5% (R1: 4,303 ± 567 W, R6: 4,055 ± 582 W) during P20 and a decrease of 3.3% (R1: 4,549 ± 659 W, R6: 4,363 ± 476 W) during P40. Peak force significantly decreased by 7.3% (R1: 2,861 ± 247 N, R6: 2,657 ± 225 N) during P0 in comparison with a decrease of 2.7% (R1: 2,811 ± 327 N, R6: 2,730 ± 285 N) during P20 and an increase of 0.4% (R1: 2,861 ± 323 N, R6: 2,862 ± 280 N) during P40. Peak velocity significantly decreased by 10.2% (R1: 1.97 ± 0.15 m·s(-1), R6: 1.79 ± 0.11 m·s(-1)) during P0 in comparison with a decrease of 3.8% (R1: 1.89 ± 0.13 m·s(-1), R6: 1.82 ± 0.12 m·s(-1)) during P20 and a decrease of 1.7% (R1: 1.93 ± 0.17 m·s(-1), R6: 1.89 ± 0.14 m·s(-1)) during P40. The results demonstrate that IRR periods allow for the maintenance of power in the power clean during a multiple set exercise protocol and that this may have implications for improved training adaptations.


Assuntos
Levantamento de Peso/fisiologia , Adulto , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Descanso/fisiologia , Adulto Jovem
14.
J Vis Exp ; (182)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575533

RESUMO

Previously developed rodent resistance-based exercise models, including synergistic ablation, electrical stimulation, weighted-ladder climbing, and most recently, weighted-sled pulling, are highly effective at providing a hypertrophic stimulus to induce skeletal muscle adaptations. While these models have proven invaluable for skeletal muscle research, they are either invasive or involuntary and labor-intensive. Fortunately, many rodent strains voluntarily run long distances when given access to a running wheel. Loaded wheel running (LWR) models in rodents are capable of inducing adaptations commonly observed with resistance training in humans, such as increased muscle mass and fiber hypertrophy, as well as stimulation of muscle protein synthesis. However, the addition of moderate wheel load either fails to deter mice from running great distances, which is more reflective of an endurance/resistance training model, or the mice discontinue running nearly entirely due to the method of load application. Therefore, a novel high-load wheel running model (HLWR) has been developed for mice where external resistance is applied and progressively increased, enabling mice to continue running with much higher loads than previously utilized. Preliminary results from this novel HLWR model suggest it provides sufficient stimulus to induce hypertrophic adaptations over the 9 week training protocol. Herein, the specific procedures to execute this simple yet inexpensive progressive resistance-based exercise training model in mice are described.


Assuntos
Condicionamento Físico Animal , Treinamento Resistido , Animais , Camundongos , Atividade Motora/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Treinamento Resistido/métodos
15.
Front Physiol ; 12: 735932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777004

RESUMO

Before major athletic events, a taper is often prescribed to facilitate recovery and enhance performance. However, it is unknown which taper model is most effective for peaking maximal strength and positively augmenting skeletal muscle. Thus, the purpose of this study was to compare performance outcomes and skeletal muscle adaptations following a step vs. an exponential taper in strength athletes. Sixteen powerlifters (24.0 ± 4.0 years, 174.4 ± 8.2 cm, 89.8 ± 21.4 kg) participated in a 6-week training program aimed at peaking maximal strength on back squat [initial 1-repetition-maximum (1RM): 174.7 ± 33.4 kg], bench press (118.5 ± 29.9 kg), and deadlift (189.9 ± 41.2 kg). Powerlifters were matched based on relative maximal strength, and randomly assigned to either (a) 1-week overreach and 1-week step taper or (b) 1-week overreach and 3-week exponential taper. Athletes were tested pre- and post-training on measures of body composition, jumping performance, isometric squat, and 1RM. Whole muscle size was assessed at the proximal, middle, and distal vastus lateralis using ultrasonography and microbiopsies at the middle vastus lateralis site. Muscle samples (n = 15) were analyzed for fiber size, fiber type [myosin-heavy chain (MHC)-I, -IIA, -IIX, hybrid-I/IIA] using whole muscle immunohistochemistry and single fiber dot blots, gene expression, and microRNA abundance. There were significant main time effects for 1RM squat (p < 0.001), bench press (p < 0.001), and deadlift, (p = 0.024), powerlifting total (p < 0.001), Wilks Score (p < 0.001), squat jump peak-power scaled to body mass (p = 0.001), body mass (p = 0.005), fat mass (p = 0.002), and fat mass index (p = 0.002). There were significant main time effects for medial whole muscle cross-sectional area (mCSA) (p = 0.006) and averaged sites (p < 0.001). There was also a significant interaction for MHC-IIA fiber cross-sectional area (fCSA) (p = 0.014) with post hoc comparisons revealing increases following the step-taper only (p = 0.002). There were significant main time effects for single-fiber MHC-I% (p = 0.015) and MHC-IIA% (p = 0.033), as well as for MyoD (p = 0.002), MyoG (p = 0.037), and miR-499a (p = 0.033). Overall, increases in whole mCSA, fCSA, MHC-IIA fCSA, and MHC transitions appeared to favor the step taper group. An overreach followed by a step taper appears to produce a myocellular environment that enhances skeletal muscle adaptations, whereas an exponential taper may favor neuromuscular performance.

16.
Front Rehabil Sci ; 2: 757789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36188800

RESUMO

Background: Eccentric muscle contractions are commonly used in exercise regimens, as well as in rehabilitation as a treatment against muscle atrophy and weakness. If repeated multiple times, eccentric contractions may result in skeletal muscle injury and loss of function. Skeletal muscle possesses the remarkable ability to repair and regenerate after an injury or damage; however, this ability is impaired with aging. Phytoecdysteroids are natural plant steroids that possess medicinal, pharmacological, and biological properties, with no adverse side effects in mammals. Previous research has demonstrated that administration of phytoecdysteroids, such as 20-hydroxyecdysone (20E), leads to an increase in protein synthesis signaling and skeletal muscle strength. Methods: To investigate whether 20E enhances skeletal muscle recovery from eccentric contraction-induced damage, adult (7-8 mo) and old (26-27 mo) mice were subjected to injurious eccentric contractions (EC), followed by 20E or placebo (PLA) supplementation for 7 days. Contractile function via torque-frequency relationships (TF) was measured three times in each mouse: pre- and post-EC, as well as after the 7-day recovery period. Mice were anesthetized with isoflurane and then electrically-stimulated isometric contractions were performed to obtain in vivo muscle function of the anterior crural muscle group before injury (pre), followed by 150 EC, and then again post-injury (post). Following recovery from anesthesia, mice received either 20E (50 mg•kg-1 BW) or PLA by oral gavage. Mice were gavaged daily for 6 days and on day 7, the TF relationship was reassessed (7-day). Results: EC resulted in significant reductions of muscle function post-injury, regardless of age or treatment condition (p < 0.001). 20E supplementation completely recovered muscle function after 7 days in both adult and old mice (pre vs. 7-day; p > 0.05), while PLA muscle function remained reduced (pre vs. 7-day; p < 0.01). In addition, histological markers of muscle damage appear lower in damaged muscle from 20E-treated mice after the 7-day recovery period, compared to PLA. Conclusions: Taken together, these findings demonstrate that 20E fully recovers skeletal muscle function in both adult and old mice just 7 days after eccentric contraction-induced damage. However, the underlying mechanics by which 20E contributes to the accelerated recovery from muscle damage warrant further investigation.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33418916

RESUMO

Skeletal muscle mass and strength are lost with aging. Phytoecdysteroids, in particular 20-hydroxyecdysone (20E), increase protein synthesis in C2C12 skeletal muscle cells and muscle strength in young rats. The objective of this study was to determine whether an extract from Ajuga turkestanica (ATE), enriched in phytoecdysteroids, and 20E affect skeletal muscle mass and fiber size, fiber type, activation of the PI3K-Akt signaling pathway, and the mRNA levels of MAFbx, MuRF-1, and myostatin in sedentary aging mice. Aging male C57BL/6 mice (20 months old) received ATE, 20E, or vehicle (CT) once per day for 28 days or a single acute dose. Treatment did not alter body, muscle, or organ mass; fiber cross-sectional area; or fiber type in the triceps brachii or plantaris muscles. Likewise, protein synthesis signaling markers (i.e., phosphorylation of AktSer473 and p70S6kThr389) measured after either 28 days or acutely were unchanged. Neither ATE nor 20E treatment for 28 days affected the mRNA levels of MAFbx, MuRF-1, and myostatin. In conclusion, these data indicate that phytoecdysteroid treatment does not alter muscle mass or fiber type, nor does it activate protein synthesis signaling in the skeletal muscle of sedentary aging mice.


Assuntos
Anabolizantes , Envelhecimento , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Ratos
18.
Nutr Res ; 76: 9-19, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32142970

RESUMO

Postmenopausal status is associated with an increase in total and abdominal body fat as well as increased incidence of insulin resistance and cardiovascular disease. The purpose of this study was to determine if watermelon supplementation affects select systemic markers of atherosclerosis and measures of insulin resistance in overweight and obese postmenopausal women. We hypothesized that overweight and obese postmenopausal women consuming 100% watermelon puree daily for 6 weeks would have improved levels of select systemic markers connected with cardiovascular disease without changing markers of insulin resistance. To test this hypothesis, overweight and obese postmenopausal women were recruited to participate in this study. Participants were randomly assigned to either the control group (no intervention) or the watermelon puree group (WM) for 6 weeks. Plasma concentration of markers connected with atherosclerosis and glycemic control were measured pre- and poststudy. A significant 6% decrease in soluble vascular cell adhesion molecule-1 occurred pre- to poststudy in WM, P = .003. The pattern of change in fasting blood glucose (P = .633), insulin (P = .158), and homeostatic model assessment-estimated insulin resistance (P = .174) did not differ between groups. Pre- to poststudy increases were measured in the fasting plasma concentration of l-arginine (8%, P = .005), cis-lycopene (32%, P = .003), and trans-lycopene (42%, P = .003) in WM. We conclude that 6 weeks of watermelon supplementation improved soluble vascular cell adhesion molecule-1 levels, a marker connected to atherogenesis, independent of changes in body composition or glycemic control.


Assuntos
Aterosclerose/sangue , Citrullus/química , Dieta , Frutas/química , Obesidade/sangue , Pós-Menopausa , Molécula 1 de Adesão de Célula Vascular/sangue , Arginina/sangue , Arginina/uso terapêutico , Aterosclerose/dietoterapia , Aterosclerose/prevenção & controle , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Citrulina/uso terapêutico , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Licopeno/sangue , Licopeno/uso terapêutico , Pessoa de Meia-Idade , Sobrepeso/sangue , Extratos Vegetais/sangue , Extratos Vegetais/uso terapêutico
19.
Nutrients ; 12(8)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784847

RESUMO

This randomized trial compared pea protein, whey protein, and water-only supplementation on muscle damage, inflammation, delayed onset of muscle soreness (DOMS), and physical fitness test performance during a 5-day period after a 90-min eccentric exercise bout in non-athletic non-obese males (n = 92, ages 18-55 years). The two protein sources (0.9 g protein/kg divided into three doses/day) were administered under double blind procedures. The eccentric exercise protocol induced significant muscle damage and soreness, and reduced bench press and 30-s Wingate performance. Whey protein supplementation significantly attenuated post-exercise blood levels for biomarkers of muscle damage compared to water-only, with large effect sizes for creatine kinase and myoglobin during the fourth and fifth days of recovery (Cohen's d > 0.80); pea protein versus water supplementation had an intermediate non-significant effect (Cohen's d < 0.50); and no significant differences between whey and pea protein were found. Whey and pea protein compared to water supplementation had no significant effects on post-exercise DOMS and the fitness tests. In conclusion, high intake of whey protein for 5 days after intensive eccentric exercise mitigated the efflux of muscle damage biomarkers, with the intake of pea protein having an intermediate effect.


Assuntos
Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Mialgia/prevenção & controle , Proteínas de Ervilha/farmacologia , Proteínas do Soro do Leite/farmacologia , Adolescente , Adulto , Biomarcadores/sangue , Proteína C-Reativa/efeitos dos fármacos , Creatina Quinase/sangue , Método Duplo-Cego , Teste de Esforço , Humanos , Masculino , Pessoa de Meia-Idade , Mioglobina/sangue , Aptidão Física/fisiologia , Levantamento de Peso/fisiologia , Adulto Jovem
20.
Am J Physiol Cell Physiol ; 297(4): C1019-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19657059

RESUMO

IGF-I increases skeletal muscle mass, but whether IGF-I increases type IIb myosin heavy chain (MyHC) transcriptional activity is not known. C2C12 myotubes were cultured with or without IGF-I to determine whether IGF-I increases type IIb MyHC promoter activity, and if so, what region of the promoter might IGF-I signaling regulate. At differentiation days 3 and 4, IGF-I increased type IIb MyHC mRNA and mouse 3.0-kb type IIb MyHC promoter activity. Deletion construct studies identified a potential IGF-I-responsive region between 1.25 and 1.2 kb of the type IIb MyHC promoter, which contained an exact 6-bp T-cell factor/lymphoid enhancer factor (Tcf/Lef) binding site at position -1206 to -1201. Site-specific mutation of the putative Tcf/Lef binding site reduced IGF-I-induced 1.3-kb type IIb MyHC promoter activity. To identify potential IGF-I signaling molecules, the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY-294002 were both found to markedly attenuate IGF-I activation of the 1.3-kb type IIb MyHC promoter. Downstream signaling of IGF-I can phosphorylate and inactivate GSK-3beta, thereby enhancing beta-catenin protein. The GSK-3beta inhibitor, LiCl, dramatically enhanced IGF-I induction of the 1.3-kb type IIb MyHC promoter, and constitutively active GSK-3beta attenuated IGF-I-induced 1.3-kb type IIb MyHC promoter activity. Finally, IGF-I increased nuclear beta-catenin protein, and small interfering RNA knockdown of beta-catenin attenuated IGF-I-induced 1.3-kb type IIb MyHC promoter activity and type IIb MyHC mRNA. In summary, IGF-I stimulation of C2C12 myotubes increases mouse type IIb MyHC promoter activity, likely through signaling of PI3K, GSK-3beta, beta-catenin, and a Tcf/Lef binding site at -1,206 to -1,201 bp in the promoter.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Androstadienos/farmacologia , Animais , Células Cultivadas , Cromonas/farmacologia , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fator de Crescimento Insulin-Like I/farmacologia , Cloreto de Lítio/farmacologia , Camundongos , Morfolinas/farmacologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Mutação , Cadeias Pesadas de Miosina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Wortmanina , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA