Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400850, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213440

RESUMO

The applications of fluorinated molecules in chemical biology are rapidly expanding driven by the unique properties of C-F bonds, leading to increased interest in methodologies for controlled introduction of this atom. In this study, we present the first method for late-stage fluorination of tyrosine residues in proteins. Our results demonstrate that electrophilic fluorination using Selectfluor, a stable and non-toxic reagent, offers a straightforward and cost-effective method for labeling Cyanovirin-N (CVN), a 101-amino-acid lectin with effective antiviral activity. Uni- and bidimensional 1H, 13C and 19F NMR analyses, along with mass spectrometry, revealed chemoselective fluorination of the three tyrosine residues in CVN without affecting its overall structure or mannose-binding affinity. Additionally, we observed that other aromatic amino acids, such as tryptophan, phenylalanine, and histidine, are not fluorinated using this method. These findings advance our understanding of protein fluorination and its applications in studying structure, dynamics, and interactions, as well as other biological utilities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30519257

RESUMO

BACKGROUND: Despite the development of new therapies for leishmaniasis, among the 200 countries or territories reporting to the WHO, 87 were identified as endemic for Tegumentary Leishmaniasis and 75 as endemic for Visceral Leishmaniasis. The identification of antileishmanial drug candidates is essential to fill the drug discovery pipeline for leishmaniasis. In the hit molecule LQB-118 selected, the first generation of pterocarpanquinones was effective and safe against experimental visceral and cutaneous leishmaniasis via oral delivery. In this paper, we report the synthesis and antileishmanial activity of the second generation of pterocarpanoquinones. METHODS: The second generation of pterocarpanquinones 2a-f was prepared through a palladium-catalyzed oxyarylation of dihydronaphtalen and chromens with iodolawsone, easily prepared by iodination of lawsone. The spectrum of antileishmanial activity was evaluated in promastigotes and intracellular amastigotes of L. amazonensis, L. braziliensis, and L. infantum. Toxicity was assessed in peritoneal macrophages and selective index calculated by CC50/IC50. Oxidative stress was measured by intracellular ROS levels and mitochondrial membrane potential in treated cells. RESULTS: In this work, we answered two pertinent questions about the structure of the first-generation pterocarpanquinones: the configuration and positions of rings B (pyran) and C (furan) and the presence of oxygen in the B ring. When rings B and C are exchanged, we noted an improvement of the activity against promastigotes and amastigotes of L. amazonensis and promastigotes of L. infantum. As to the oxygen in ring B of the new generation, we observed that the oxygenated compound 2b is approximately twice as active against L. braziliensis promastigotes than its deoxy derivative 2a. Another modification that improved the activity was the addition of the methylenedioxy group. A variation in the susceptibility among species was evident in the clinically relevant form of the parasite, the intracellular amastigote. L. amazonensis was the species most susceptible to novel derivatives, whilst L. infantum was resistant to most of them. The pterocarpanoquinones (2b and 2c) that possess the oxygen atom in ring B showed induction of increased ROS production. CONCLUSIONS: The data presented indicate that the pterocarpanoquinones are promising compounds for the development of new leishmanicidal agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA