Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 26(7): 749-756, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506771

RESUMO

BACKGROUND & AIMS: Cell therapies based on mesenchymal stromal cells (MSCs) have gained an increasing therapeutic interest in the context of multiple disorders. Nonetheless, this field still faces important challenges, particularly concerning suitable manufacturing platforms. Here, we aimed at establishing a scalable culture system to expand umbilical cord-derived Wharton's jelly MSC (MSC(WJ)) and their derived extracellular vesicles (EVs) by using dissolvable microcarriers combined with xeno(geneic)-free culture medium. METHODS: MSC(WJ) isolated from three donors were cultured at a starting density of 1 × 106 cells per spinner flask, i.e., 2.8 × 103 cells per cm2 of dissolvable microcarrier surface area. After a 6-day expansion period of MSC(WJ), extracellular vesicles (EVs) were produced for 24 h. RESULTS: Taking advantage of an intermittent agitation regimen, we observed high adhesion rates to the microcarriers (over 90% at 24 h) and achieved 15.8 ± 0.7-fold expansion after 6 days of culture. Notably, dissolution of the microcarriers was achieved through a pectinase-based solution to recover the cell product, reducing the hurdles of downstream processing. MSC identity was validated by detecting the characteristic MSC immunophenotype and by multilineage differentiation assays. Considering the growing interest in MSC-derived EVs, which are known to be mediators of the therapeutic features of MSC, this platform also was evaluated for EV production. Upon a 24-h period of conditioning, secreted EVs were isolated by ultrafiltration followed by anion-exchange chromatography and exhibited the typical cup-shaped morphology, small size distribution (162.6 ± 30.2 nm) and expressed EV markers (CD63, CD9 and syntenin-1). CONCLUSIONS: Taken together, we established a time-effective and robust scalable platform that complies with clinical-grade standards for the dual production of MSC(WJ) and their derived EV.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Proliferação de Células , Cordão Umbilical/citologia , Geleia de Wharton/citologia
2.
Cytotherapy ; 26(7): 700-713, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38483360

RESUMO

BACKGROUND AIMS: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS: Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS: Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS: Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Microglia , Neuroproteção , Doença de Parkinson , alfa-Sinucleína , Animais , Células-Tronco Mesenquimais/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Ratos , Masculino , Microglia/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Secretoma/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Cultivadas , Humanos
3.
Biotechnol Bioeng ; 120(9): 2742-2755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318000

RESUMO

The therapeutic effects of human mesenchymal stromal cells (MSC) have been attributed mostly to their paracrine activity, exerted through small-secreted extracellular vesicles (EVs) rather than their engraftment into injured tissues. Currently, the production of MSC-derived EVs (MSC-EVs) is performed in laborious static culture systems with limited manufacturing capacity using serum-containing media. In this work, a serum-/xenogeneic-free microcarrier-based culture system was successfully established for bone marrow-derived MSC cultivation and MSC-EV production using a 2  l-scale controlled stirred tank reactor (STR) operated under fed-batch (FB) or fed-batch combined with continuous perfusion (FB/CP). Overall, maximal cell numbers of (3.0 ± 0.12) × 108 and (5.3 ± 0.32) × 108 were attained at Days 8 and 12 for FB and FB/CP cultures, respectively, and MSC(M) expanded under both conditions retained their immunophenotype. MSC-EVs were identified in the conditioned medium collected from all STR cultures by transmission electron microscopy, and EV protein markers were successfully identified by Western blot analysis. Overall, no significant differences were observed between EVs isolated from MSC expanded in STR operated under the two feeding approaches. EV mean sizes of 163 ± 5.27 nm and 162 ± 4.44 nm (p > 0.05) and concentrations of (2.4 ± 0.35) × 1011 EVs/mL and (3.0 ± 0.48) × 1011 EVs/mL (p > 0.05) were estimated by nanoparticle tracking analysis for FB and FB/CP cultures, respectively. The STR-based platform optimized herein represents a major contribution toward the development of human MSC- and MSC-EV-based products as promising therapeutic agents for Regenerative Medicine settings.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura Celular por Lotes , Vesículas Extracelulares/metabolismo , Medicina Regenerativa , Proliferação de Células
4.
J Gene Med ; 23(7): e3342, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33870576

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSC) have been exploited for the treatment of ischemic diseases given their angiogenic potential. Despite bone marrow (BM) being the most studied tissue source, cells with similar intrinsic properties can be isolated from adipose tissue (AT) and umbilical cord matrix (UCM). The present study aims to compare the angiogenic potential of MSC obtained from BM, AT and UCM that were genetically modified with vascular endothelial growth factor (VEGF)-encoding minicircle (MC) vectors. The overexpression of VEGF combined with the intrinsic properties of MSC could represent a promising strategy towards angiogenic therapies. METHODS: We established a microporation-based protocol to transfect human MSC using VEGF-encoding MC (MC-VEGF). VEGF production levels were measured by an enzyme-linked immunosorbent assay and a quantitative polymerase chain reaction. The in vitro angiogenic potential of transfected cells was quantified using cell tube formation and migration functional studies. RESULTS: MSC isolated from BM, AT or UCM showed similar levels of VEGF secretion after transfection with MC-VEGF. Those values were significantly higher when compared to non-transfected cells, indicating an effective enhancement of VEGF production. Transfected cells displayed higher in vitro angiogenic potential than non-transfected controls, as demonstrated by functional in vitro assays. No significant differences were observed among cells from different sources. CONCLUSIONS: Minicircles can be successfully used to transiently overexpress VEGF in human MSC, regardless of the cell tissue source, representing an important advantage in a clinical context (i.e., angiogenic therapy) because a standard protocol might be applied to MSC of different tissue sources, which can be differentially selected according to the application (e.g., autologous versus allogeneic settings).


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Expressão Gênica , Humanos , Neovascularização Fisiológica , Transfecção/métodos , Cordão Umbilical/metabolismo
5.
Stem Cells ; 38(8): 1007-1019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352186

RESUMO

Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow-derived MSCs expanded under xenogeneic-free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4- and 6-fold, respectively) after a 14-day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg-like phenotype proliferate. These MSC-induced Treg-like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC-induced Treg-like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD-1 is higher in Treg-like cells than in Tcon, whereas the frequency of PDL-1 increases in MSCs after coculture. TGF-ß levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg-like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF-ß and/or PD-1/PDL-1 expression. This MSC-induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.


Assuntos
Linfócitos T CD4-Positivos/citologia , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/citologia , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Humanos , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/metabolismo
6.
J Cell Physiol ; 235(10): 7496-7515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32162324

RESUMO

Noncollagenous proteins in the bone extracellular matrix, such as osteocalcin (OC) and osteopontin (OPN), inherent to evolution of bone as a skeletal tissue, are known to regulate bone formation and mineralization. However, the fundamental basis of this regulatory role remains unknown. Here, for the first time, we use mouse mesenchymal stem/stromal cells (MSC) lacking both OC and OPN to investigate the mechanistic roles of OC and OPN on the proliferation capacity and differentiation ability of MSC. We found that the loss of OC and OPN reduces stem cells self-renewal potential and multipotency, affects their differentiation into an osteogenic lineage, and impairs their angiogenic potential while maintaining chondrogenic and adipogenic lineages. Moreover, loss of OC and OPN compromises the extracellular matrix integrity and maturation, observed by an unexpected enhancement of glycosaminoglycans content that are associated with a more primitive skeletal connective tissue, and by a delay on the maturation of mineral species produced. Interestingly, exogenously supplemented OC and OPN were able to rescue MSC proliferative and osteogenic potential along with matrix integrity and mineral quality. Taken together, these results highlight the key contributions of OC and OPN in enhancing osteogenesis and angiogenesis over primitive connective tissue, and support a potential therapeutic approach based on their exogenous supplementation.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Osteocalcina/metabolismo , Osteogênese/fisiologia , Osteopontina/metabolismo , Adipogenia/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/fisiologia , Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/fisiologia
7.
J Cell Physiol ; 235(10): 7224-7238, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037550

RESUMO

Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2 , compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Microambiente Celular/fisiologia , Criopreservação , Meios de Cultura Livres de Soro , Humanos , Imunofenotipagem , Técnicas In Vitro , Neovascularização Fisiológica/genética , Oxigênio , Transcriptoma , Cordão Umbilical/citologia
8.
J Cell Physiol ; 234(4): 3973-3984, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146686

RESUMO

Mesenchymal stromal cells (MSC) isolated from synovial tissues constitute a novel source of stem-like cells with promising applications in cartilage regeneration and potentially in other regenerative medicine and tissue-engineering settings. Detailed characterization of these cells is lacking, thus compromising their full potential. Here we present the detailed characterization of the ex vivo expansion of synovium-derived stromal cells collected by three different biopsy methods: synovium-direct biopsy, arthroscopic trocar shaver blade filtrate, and cells isolated from synovial fluid (SF) samples. Isolation success rates were >75% for all sources. MSC obtained from the different samples displayed the characteristic immunophenotype of adult MSC, expressing CD73, CD90, and CD105. Arthroscopic shaver blade-derived cells showed the higher proliferation capacity measured by the fold increase (FI) in total cell number over several passages and considering their cumulative population doublings (CPD; 15 ± 0.85 vs. 13 ± 0.73 for synovium vs. 11 ± 0.97 for SF). Also, these cells were able to sustain an increased proliferation under hypoxic (2% O2 ) conditions (FI 55 ± 4 vs. 37 ± 7) after 17 days in culture. Expanded cells were able to differentiate successfully along the osteogenic, adipogenic, and chondrogenic lineages in vitro. Overall, these results demonstrate that synovial tissues represent a promising source for the isolation of human MSC, while depicting the variability associated to the biopsy method used, which impact cell behavior in vitro.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Separação Celular/métodos , Células-Tronco Mesenquimais/fisiologia , Líquido Sinovial/citologia , Membrana Sinovial/citologia , Adulto , Idoso , Biomarcadores/metabolismo , Biópsia , Técnicas de Cultura de Células , Hipóxia Celular , Células Cultivadas , Feminino , Humanos , Cinética , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
9.
J Cell Biochem ; 120(4): 6555-6569, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362184

RESUMO

A high demand for functional bone grafts is being observed worldwide, especially due to the increased life expectancy. Osteoinductive components should be incorporated into functional bone grafts, accelerating cell recruitment, cell proliferation, angiogenesis, and new bone formation at a defect site. Noncollagenous bone matrix proteins, especially osteopontin (OPN) and osteocalcin (OC), have been reported to regulate some physiological process, such as cell migration and bone mineralization. However, the effects of OPN and OC on cell proliferation, osteogenic differentiation, mineralization, and angiogenesis are still undefined. Therefore, we assessed the exogenous effect of OPN and OC supplementation on human bone marrow mesenchymal stem/stromal cells (hBM MSC) proliferation and osteogenic differentiation. OPN dose-dependently increased the proliferation of hBM MSC, as well as improved the angiogenic properties of human umbilical vein endothelial cells (HUVEC) by increasing the capillary-like tube formation in vitro. On the other hand, OC enhanced the differentiation of hBM MSC into osteoblasts and demonstrated an increase in extracellular calcium levels and alkaline phosphatase activity, as well as higher messenger RNA levels of mature osteogenic markers osteopontin and osteocalcin. In vivo assessment of OC/OPN-enhanced scaffolds in a critical-sized defect rabbit long-bone model revealed no infection, while new bone was being formed. Taken together, these results suggest that OC and OPN stimulate bone regeneration by inducing stem cell proliferation, osteogenesis and by enhancing angiogenic properties. The synergistic effect of OC and OPN observed in this study can be applied as an attractive strategy for bone regeneration therapeutics by targeting different vital cellular processes.


Assuntos
Calcificação Fisiológica , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/citologia , Osteocalcina/administração & dosagem , Osteopontina/administração & dosagem , Animais , Regeneração Óssea , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Fraturas Ósseas/prevenção & controle , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Coelhos
10.
Cytotherapy ; 17(4): 428-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680300

RESUMO

BACKGROUND AIMS: Platelet transfusion can be a life-saving procedure in different medical settings. Thus, there is an increasing demand for platelets, of which shelf-life is only 5 days. The efficient ex vivo biomanufacturing of platelets would allow overcoming the shortages of donated platelets. METHODS: We exploited a two-stage culture protocol aiming to study the effect of different parameters on the megakaryo/thrombopoiesis ex vivo. In the expansion stage, human umbilical cord blood (UCB)-derived CD34(+)-enriched cells were expanded in co-culture with human bone marrow mesenchymal stromal cells (BM-MSCs). The megakaryocytic commitment and platelet generation were studied, considering the impact of exogenous addition of thrombopoietin (TPO) in the expansion stage and a cytokine cocktail (Cyt) including TPO and interleukin-3 in the differentiation stage, with the use of different culture medium formulations, and in the presence/absence of BM-MSCs (direct versus non-direct cell-cell contact). RESULTS: Our results suggest that an early megakaryocytic commitment, driven by TPO addition during the expansion stage, further enhanced megakaryopoiesis. Importantly, the results suggest that co-culture with BM-MSCs under serum-free conditions combined with Cyt addition, in the differentiation stage, significantly improved the efficiency yield of megakaryo/thrombopoiesis as well as increasing %CD41, %CD42b and polyploid content; in particular, direct contact of expanded cells with BM-MSCs, in the differentiation stage, enhanced the efficiency yield of megakaryo/thrombopoiesis, despite inhibiting their maturation. CONCLUSIONS: The present study established an in vitro model for the hematopoietic niche that combines different biological factors, namely, the presence of stromal/accessory cells and biochemical cues, which mimics the BM niche and enhances an efficient megakaryo/thrombopoiesis process ex vivo.


Assuntos
Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Células-Tronco Mesenquimais/citologia , Transfusão de Plaquetas/métodos , Trombopoese/fisiologia , Antígenos CD34/metabolismo , Plaquetas/citologia , Comunicação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Sangue Fetal/citologia , Humanos , Interleucina-3/farmacologia , Trombopoetina/farmacologia
11.
Cytotherapy ; 17(12): 1777-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475753

RESUMO

BACKGROUND AIMS: The therapeutic application of CD34+ circulating progenitor cells (which includes endothelial progenitor cells) has been hampered by the quantity and quality of isolated circulating CD34(+) cells from the patient's peripheral blood. Our group had previously established a suspension culture system for human CD34(+) cells, with increased quantity and quality (QQ) of the angiogenic cell product. We successfully scaled up the expansion process with the use of culture bags because there is the need to move toward a dynamic and fully controlled bioreactor system to meet Good Manufacturing Practice (GMP) standards and attain clinically meaningful cell doses in a time- and cost-effective way. METHODS: CD34(+) cells isolated from mobilized peripheral blood of healthy donors were expanded ex vivo for 7 days in QQ medium (serum-free) in cell culture bags (30 mL) and pre- and post-expansion cells were characterized by means of flow cytometry and quantitative polymerase chain reaction; angiogenic potential was assessed by use of the in vitro tube formation assay. RESULTS: Our data show effective expansion of the cultured population (7-fold) while maintaining the stem/progenitor content and increasing the endothelial population. Moreover, post-expanded cells showed higher tube formation capacity compared with pre-expanded cells. In addition, an upregulation of the anti-inflammatory gene expression and a downregulation of pro-inflammatory genes were observed, which suggests that the increase in angiogenic potential is not paired with an increase in the inflammatory profile. CONCLUSIONS: The QQ expansion method was successfully scaled up to cell culture bags and was able to meet GMP standards, with a higher in vitro angiogenic profile.


Assuntos
Antígenos CD34/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Células Progenitoras Endoteliais/metabolismo , Inflamação/imunologia , Neovascularização Fisiológica/fisiologia , Reatores Biológicos , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Inflamação/genética , Regulação para Cima
12.
Biotechnol Bioeng ; 111(6): 1116-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24420557

RESUMO

The large cell doses (>1 × 10(6) cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC production system.


Assuntos
Reatores Biológicos , Proliferação de Células , Células-Tronco Mesenquimais/fisiologia , Células Estromais/fisiologia , Técnicas de Cultura de Células/métodos , Humanos , Imunofenotipagem
13.
EJNMMI Res ; 14(1): 26, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453813

RESUMO

BACKGROUND: Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, 64Cu has attracted attention as a possible theranostic radionuclide for glioblastoma. In particular, [64Cu]CuCl2 accumulates in glioblastoma, being considered a suitable agent for positron emission tomography. Here, we explore further the theranostic potential of [64Cu]CuCl2, by studying its therapeutic effects in advanced three-dimensional glioblastoma cellular models. First, we established spheroids from three glioblastoma (T98G, U373, and U87) and a non-tumoral astrocytic cell line. Then, we evaluated the therapeutic responses of spheroids to [64Cu]CuCl2 exposure by analyzing spheroids' growth, viability, and cells' proliferative capacity. Afterward, we studied possible mechanisms responsible for the therapeutic outcomes, including the uptake of 64Cu, the expression levels of a copper transporter (CTR1), the presence of a cancer stem cell population, and the production of reactive oxygen species (ROS). RESULTS: Results revealed that [64Cu]CuCl2 is able to significantly reduce spheroids' growth and viability, while also affecting cells' proliferation capacity. The uptake of 64Cu, the presence of cancer stem-like cells and the production of ROS were in accordance with the therapeutic response. However, expression levels of CTR1 were not in agreement with uptake levels, revealing that other mechanisms could be involved in the uptake of 64Cu. CONCLUSIONS: Overall, our results further support [64Cu]CuCl2 potential as a theranostic agent for glioblastoma, unveiling potential mechanisms that could be involved in the therapeutic response.

14.
Front Bioeng Biotechnol ; 12: 1380950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846805

RESUMO

As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.

15.
Biomedicines ; 11(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189850

RESUMO

Extracellular vesicles (EVs) are cell-derived nano-sized lipid membranous structures that modulate cell-cell communication by transporting a variety of biologically active cellular components. The potential of EVs in delivering functional cargos to targeted cells, their capacity to cross biological barriers, as well as their high modification flexibility, make them promising drug delivery vehicles for cell-free therapies. Mesenchymal stromal cells (MSCs) are known for their great paracrine trophic activity, which is largely sustained by the secretion of EVs. MSC-derived EVs (MSC-EVs) retain important features of the parental cells and can be bioengineered to improve their therapeutic payload and target specificity, demonstrating increased therapeutic potential in numerous pre-clinical animal models, including in the treatment of cancer and several degenerative diseases. Here, we review the fundamentals of EV biology and the bioengineering strategies currently available to maximize the therapeutic value of EVs, focusing on their cargo and surface manipulation. Then, a comprehensive overview of the methods and applications of bioengineered MSC-EVs is presented, while discussing the technical hurdles yet to be addressed before their clinical translation as therapeutic agents.

16.
Biomedicines ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37239023

RESUMO

Cell-based therapies using periodontal ligament stromal cells (PDLSC) for periodontal regeneration may represent an alternative source for mesenchymal stromal cells (MSC) to MSC derived from bone marrow (MSC(M)) and adipose tissue (MSC(AT)). We aimed to characterize the osteogenic/periodontal potential of PDLSC in comparison to MSC(M) and MSC(AT). PDLSC were obtained from surgically extracted healthy human third molars, while MSC(M) and MSC(AT) were obtained from a previously established cell bank. Flow cytometry, immunocytochemistry, and cell proliferation analyses provided cellular characteristics from each group. Cells from the three groups presented MSC-like morphology, MSC-related marker expression, and multilineage differentiation capacity (adipogenic, chondrogenic, and osteogenic). In this study, PDLSC expressed osteopontin, osteocalcin, and asporin, while MSC(M) and MSC(AT) did not. Of note, only PDLSC expressed CD146, a marker previously applied to identify PDLSC, and presented higher proliferative potential compared to MSC(M) and MSC(AT). Upon osteogenic induction, PDLSC exhibited higher calcium content and enhanced upregulation of osteogenic/periodontal genes compared to MSC(M) and MSC(AT), such as Runx2, Col1A1 and CEMP-1. However, the alkaline phosphatase activity of PDLSC did not increase. Our findings suggest that PDLSC might be a promising cell source for periodontal regeneration, presenting enhanced proliferative and osteogenic potential compared to MSC(M) and MSC(AT).

17.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37760170

RESUMO

Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.

18.
Biomedicines ; 11(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238911

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD. However, to accelerate the integration of this therapy in the clinical setting, there is still the need to develop a protocol for the large-scale production of secretome under good manufacturing practices (GMP) guidelines. Bioreactors have the capacity to produce large quantities of secretomes in a scalable manner, surpassing the limitations of planar static culture systems. However, few studies focused on the influence of the culture system used to expand MSC, on the secretome composition. In this work, we studied the capacity of the secretome produced by bone marrow-derived mesenchymal stromal cells (BMSC) expanded in a spinner flask (SP) and in a Vertical-Wheel™ bioreactor (VWBR) system, to induce neurodifferentiation of human neural progenitor cells (hNPCs) and to prevent dopaminergic neuron degeneration caused by the overexpression of α-synuclein in one Caenorhabditis elegans model of PD. Results showed that secretomes from both systems were able to induce neurodifferentiation, though the secretome produced in the SP system had a greater effect. Additionally, in the conditions of our study, only the secretome produced in SP had a neuroprotective potential. Lastly, the secretomes had different profiles regarding the presence and/or specific intensity of different molecules, namely, interleukin (IL)-6, IL-4, matrix metalloproteinase-2 (MMP2), and 3 (MMP3), tumor necrosis factor-beta (TNF-ß), osteopontin, nerve growth factor beta (NGFß), granulocyte colony-stimulating factor (GCSF), heparin-binding (HB) epithelial growth factor (EGF)-like growth factor (HB-EGF), and IL-13. Overall, our results suggest that the culture conditions might have influenced the secretory profiles of cultured cells and, consequently, the observed effects. Additional studies should further explore the effects that different culture systems have on the secretome potential of PD.

19.
Tissue Eng Part C Methods ; 29(12): 583-595, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842845

RESUMO

Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.


Assuntos
Técnicas de Cultura de Células , Incontinência Fecal , Humanos , Técnicas de Cultura de Células/métodos , Qualidade de Vida , Reatores Biológicos , Músculos
20.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354586

RESUMO

Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA