Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Cell ; 36(6): 2237-2246, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37646972

RESUMO

Induced pluripotent stem cells (iPSCs) opened the possibility to use patient cells as a model for several diseases. iPSCs can be reprogrammed from somatic cells collected in a non-invasive way, and then differentiated into any other cell type, while maintaining the donor´s genetic background. CYFIP2 variants were associated with the onset of an early form of epileptic encephalopathy. Studies with patients showed that the R87C variant seems to be one of the variants that causes more severe disease, however, to date there are no studies with a human cell model that allows investigation of the neuronal phenotype of the R87C variant. Here, we generated an iPSC line from a patient with epileptic encephalopathy caused by the CYFIP2 R87C variant. We obtained iPSC clones by reprogramming urinary progenitor cells from a female patient. The generated iPSC line presented a pluripotent stem cell morphology, normal karyotype, expressed pluripotency markers and could be differentiated into the three germ layers. In further studies, this cell line could be used as model for epileptic encephalopathy disease and drug screening studies.

2.
Stem Cells Int ; 2022: 4930932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047041

RESUMO

Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA