RESUMO
INTRODUCTION: Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients'quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives. OBJECTIVE: This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations. METHODS: Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology. RESULTS: Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase. CONCLUSION: The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.
Assuntos
Neoplasias Encefálicas , Canabinoides , Glioma , Adulto , Humanos , Simulação de Acoplamento Molecular , Qualidade de Vida , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismoRESUMO
Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.
Assuntos
Monoterpenos Acíclicos , Analgésicos , Simulação de Acoplamento Molecular , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/metabolismo , Humanos , Simulação por Computador , Animais , Dor/tratamento farmacológico , Dor/metabolismo , Monoterpenos/química , Monoterpenos/farmacologiaRESUMO
In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the "Web of Science" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.
RESUMO
Inflammation is a protective response of the body potentially caused by microbial, viral, or fungal infections, tissue damage, or even autoimmune reactions. The cardinal signs of inflammation are consequences of immunological, biochemical, and physiological changes that trigger the release of pro-inflammatory chemical mediators at the local of the injured site thus, increasing blood flow, vascular permeability, and leukocyte recruitment. The aim of this study is to give an overview of the inflammatory process, focusing on chemical mediators. The literature review was based on a search of journals published between the years 2009 and 2023, regarding the role of major chemical mediators in the inflammatory process and current studies in pathogenesis, diagnosis, and therapy. Some of the recent contributions in the study of inflammatory pathologies and their mediators, including cytokines and chemokines, the kinin system, free radicals, nitric oxide, histamine, cell adhesion molecules, leukotrienes, prostaglandins and the complement system and their role in human health and chronic diseases.
Assuntos
Inflamação , Leucócitos , Humanos , Inflamação/patologia , Citocinas , Prostaglandinas , Histamina , Mediadores da Inflamação/metabolismoRESUMO
The N-acylhydrazone function has been reported as a pharmacophore group of molecules with diverse pharmacological activities, including anti-inflammatory effects. Therefore, this study was designed to evaluate the anti-inflammatory potential of the compound N'-(3-(1H-indol-3-yl)benzylidene)-2-cyanoacetohydrazide (JR19) in vivo. The study started with the carrageenan-induced peritonitis model, followed by an investigation of leukocyte migration using the subcutaneous air pouch test and an assessment of the antinociceptive profile using formalin-induced pain. A preliminary molecular docking study focusing on the crystallographic structures of NFκB, iNOS, and sGC was performed to determine the likely mechanism of action. The computational study revealed satisfactory interaction energies with the selected targets, and the same peritonitis model was used to validate the involvement of the nitric oxide pathway and cytokine expression in the peritoneal exudate of mice pretreated with L-NAME or methylene blue. In the peritonitis assay, JR19 (10 and 20 mg/kg) reduced leukocyte migration by 59% and 52%, respectively, compared to the vehicle group, with the 10 mg/kg dose used in subsequent assays. In the subcutaneous air pouch assay, the reduction in cell migration was 66%, and the response to intraplantar formalin was reduced by 39%, particularly during the inflammatory phase, suggesting that the compound lacks central analgesic activity. In addition, a reversal of the anti-inflammatory effect was observed in mice pretreated with L-NAME or methylene blue, indicating the involvement of iNOS and sGC in the anti-inflammatory response of JR19. The compound effectively and significantly decreased the levels of IL-6, TNF-α, IL-17, and IFN-γ, and this effect was reversed in animals pretreated with L-NAME, supporting a NO-dependent anti-inflammatory effect. In contrast, pretreatment with methylene blue only reversed the reduction in TNF-α levels. Therefore, these results demonstrate the pharmacological potential of the novel N-acylhydrazone derivative, which acts through the nitric oxide pathway and cytokine signaling, making it a strong candidate as an anti-inflammatory and immunomodulatory agent.
RESUMO
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Qualidade de Vida , Doença de Alzheimer/metabolismo , Receptores DopaminérgicosRESUMO
The present study proposed the synthesis of a novel acridine derivative not yet described in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activity against L. amazonensis strains and cytotoxicity against macrophages through MTT assay and annexin V-FITC/PI, and the ability to perform an immunomodulatory action using CBA. To investigate possible molecular targets, its interaction with DNA in vitro and in silico targets were evaluated. As results, the compound showed good antileishmanial activity, with IC50 of 6.57 (amastigotes) and 94.97 (promastigotes) µg mL-1, associated with non-cytotoxicity to macrophages (CC50 > 256.00 µg mL-1). When assessed by flow cytometry, 99.8% of macrophages remained viable. The compound induced an antileishmanial effect in infected macrophages and altered TNF-α, IL-10 and IL-6 expression, suggesting a slight immunomodulatory activity. DNA assay showed an interaction with the minor grooves due to the hyperchromic effect of 47.53% and Kb 1.17 × 106 M-1, and was sustained by docking studies. Molecular dynamics simulations and MM-PBSA calculations propose cysteine protease B as a possible target. Therefore, this study demonstrates that the new compound is a promising molecule and contributes as a model for future works.
RESUMO
Autism spectrum disorder (ASD) is a neurological condition that directly affects brain functions and can culminate in delayed intellectual development, problems in verbal communication, difficulties in social interaction, and stereotyped behaviors. Its etiology reveals a genetic basis that can be strongly influenced by socio-environmental factors. Ion channels controlled by ligand voltage-activated calcium, sodium, and potassium channels may play important roles in modulating sensory and cognitive responses, and their dysfunctions may be closely associated with neurodevelopmental disorders such as ASD. This is due to ionic flow, which is of paramount importance to maintaining physiological conditions in the central nervous system and triggers action potentials, gene expression, and cell signaling. However, since ASD is a multifactorial disease, treatment is directed only to secondary symptoms. Therefore, this research aims to gather evidence concerning the principal pathophysiological mechanisms involving ion channels in order to recognize their importance as therapeutic targets for the treatment of central and secondary ASD symptoms.
Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/tratamento farmacológico , Cálcio/metabolismo , Humanos , Canais Iônicos/metabolismo , Transdução de SinaisRESUMO
The compound (E)-2-cyano-N,3-diphenylacrylamide (JMPR-01) was structurally developed using bioisosteric modifications of a hybrid prototype as formed from fragments of indomethacin and paracetamol. Initially, in vitro assays were performed to determine cell viability (in macrophage cultures), and its ability to modulate the synthesis of nitrite and cytokines (IL-1ß and TNFα) in non-cytotoxic concentrations. In vivo, anti-inflammatory activity was explored using the CFA-induced paw edema and zymosan-induced peritonitis models. To investigate possible molecular targets, molecular docking was performed with the following crystallographic structures: LT-A4-H, PDE4B, COX-2, 5-LOX, and iNOS. As results, we observed a significant reduction in the production of nitrite and IL-1ß at all concentrations used, and also for TNFα with JMPR-01 at 50 and 25 µM. The anti-edematogenic activity of JMPR-01 (100 mg/kg) was significant, reducing edema at 2-6 h, similar to the dexamethasone control. In induced peritonitis, JMPR-01 reduced leukocyte migration by 61.8, 68.5, and 90.5% at respective doses of 5, 10, and 50 mg/kg. In silico, JMPR-01 presented satisfactory coupling; mainly with LT-A4-H, PDE4B, and iNOS. These preliminary results demonstrate the strong potential of JMPR-01 to become a drug for the treatment of inflammatory diseases.