RESUMO
Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.
Assuntos
Saccharum , Silício , Grão Comestível , Carbono , Carboidratos da Dieta , Fósforo , Solo , FertilizaçãoRESUMO
Excessive rainfall in the soybean preharvest period can make mechanized crop harvesting technically and economically unfeasible, causing 100% losses in soybean grain yield. An alternative to reduce the economic losses of farmers would be using unharvested soybean crop residues as a source of nitrogen (N) for the subsequent corn crop. However, a question that still needs to be understood is whether the amount of N released from unharvested soybean residues (straw and grains) is sufficient to meet all the nutritional demand for this nutrient in the off-season corn. Therefore, this study investigated the impact of unharvested soybean crop residue persistence on the yield response of off-season corn crop (Zea mays L.) to the application of N fertilizer rates when grown in tropical Cerrado soils of medium and high fertility. Four simple corn hybrids (SYN7G17 TL, 30F53VYHR, B2433PWU, and AG 8700 PRO3) were grown in soils of medium fertility and medium acidity level (UFMS 1) and high fertility and low acidity level (UFMS 2) and fertilized with five of N fertilizer rates (0, 40, 80, 120, and 160 kg ha-1 of N) applied at 30 days after emergence (DAE). Canonical correlation analysis (CCA) was used to investigate the interrelationships between the groups of independent (agricultural production areas, corn cultivars, and N application rates) and dependent (corn agronomic traits) variables. Crop residues remaining on the soil surface from soybeans not harvested and inoculated with Bradyrhizobium spp. can supply most of the nitrogen requirement of off-season corn grown in succession, especially in tropical soils of medium fertility. However, in high-fertility tropical soils, the maximum grain yield potential of off-season corn cultivars can be obtained with the application of mineral N fertilizer in supplement the amount of nitrogen released from unharvested soybean residues. Therefore, the N requirement depends on the corn cultivar and the agricultural production area. However, our results show that when off-season corn is grown on unharvested soybean residues, nitrogen fertilization in topdressing can be dispensed. The agricultural area with high fertility soil (UFMS 2) enhances the grain yield of the off-season corn crop. The corn cultivar AG 8700 PRO3 has a higher thousand-grain mass and high grain yield potential under Brazilian Cerrado conditions.
Assuntos
Bradyrhizobium , Fabaceae , Agricultura/métodos , Fertilizantes , Nitrogênio , Estações do Ano , Solo/química , Glycine max , Zea maysRESUMO
Cowpea [Vigna unguiculata (L.) Walp] is cultivated in tropical and subtropical regions worldwide, but its production is usually limited by boron (B) deficiency, which can be mitigated by applying B via foliar spraying. In plants with nutrient mobility, the residual effect of foliar fertilization increases, which might improve its efficiency. An experiment was carried out to evaluate the concentration and mobility of the B isotopic tracer (10B) in different organs of cowpea plants, after the application of this micronutrient in the growing media and also to leaves. Treatments were designed based on B fertilization as follows: without B in the growth media, with 10B applied via foliar spraying (10B-L), with B in the growth media (substrate) and 10B via foliar spraying (10B-L + B-S), and with 10B in the growth media (substrate) without foliar spraying (10B-S), and a control without fertilization. A redistribution of 10B was observed in new leaves when the element was supplied via foliar spraying, resulting in greater leaf area, dry mass and dry matter production of aerial parts, and also the whole plant. 10Boron was redistributed when applied via foliar spraying in cowpea plants, regardless of the plant's nutritional status, which in turn might increase internal B cycling.