Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 103(1): e21631, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31587381

RESUMO

Soybean is one of most consumed and produced grains in the world, and Anticarsia gemmatalis is a pest that causes great damage to this crop due to severe defoliation during its larval phase. Plants have mechanisms that lead to the inhibition of proteases in the intestine of these herbivores, hampering their development. Understanding this complex protease inhibitor is important for pest control. The objective of this study was to evaluate the enzymatic profiles of the intestinal proteases of the soybean caterpillar at different instars. For this, the proteolytic profile of the gut in the third, fourth, and fifth instars were analyzed. Irreversible inhibitors of proteases were separately incubated with A. gemmatalis enzyme extracts at the third, fourth, and fifth instar to assess the contribution of these proteases to total proteolytic activity. The enzymatic extracts were also evaluated with specific substrates to confirm changes in the specific activities of trypsin-like, chymotrypsin-like, and cysteine proteases at different instars. The results showed that the protease profile of A. gemmatalis gut changes throughout its larval development. The activity of cysteine proteases was more intense in the first instar. On the contrary, the serine proteases showed major activities in the late stages of the larval phase. Zymogram analysis and protein identification by liquid chromatography-mass spectrometry indicated serine protease as the main protease class expressed in the fifth instar. These results may shift the focus from the rational development of the protease inhibitor to A. gemmatalis and other Lepidoptera, as the expression of major proteases is not constant.


Assuntos
Mariposas/enzimologia , Peptídeo Hidrolases/química , Animais , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/crescimento & desenvolvimento , Larva/enzimologia , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Peptídeo Hidrolases/classificação
2.
Pest Manag Sci ; 77(4): 1714-1723, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200876

RESUMO

BACKGROUND: Anticarsia gemmatalis larvae are key defoliating pests of soybean plants. Inorganic insecticides, harmful to the environment and human health, are the main molecules used in the control of this pest. To apply more sustainable management methods, organic molecules with high specificities, such as proteinaceous protease inhibitors, have been sought. Thus, molecular docking studies, kinetics assays, and biological tests were performed to evaluate the inhibitory activity of two peptides (GORE1 and GORE2) rationally designed to inhibit trypsin-like enzymes, which are the main proteases of A. gemmatalis midgut. RESULTS: The molecular docking simulations revealed critical hydrogen bonding patterns of the peptides with key active site residues of trypsin-like proteases of A. gemmatalis and other Lepidopteran insects. The negative values of binding energy indicate that hydrogen bonds potentiate the tight binding of the peptides with trypsin-like proteases, predicting an effective inhibition. The inhibition's rate constants (Ki) were 0.49 and 0.10 mM for GORE1 and GORE2, resulting in effective inhibition of the activity trypsin on the L-BApNA substrate in the in vitro tests, indicating that the peptide GORE2 has higher inhibitory capacity on the A. gemmatalis trypsins. In addition, the two peptides were determined to be reversible competitive inhibitors. The in vivo test demonstrated that the peptides harm the survival and development of A. gemmatalis larvae. CONCLUSION: These results suggest that these peptides are potential candidates in the management of A. gemmatalis larvae and provide baseline information for the design of new trypsin-like inhibitors based on peptidomimetic tools. © 2020 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Lepidópteros , Mariposas , Animais , Humanos , Larva , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Peptídeos , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA