Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 137(21): 1637-1650, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37910096

RESUMO

Cyp2c70-deficient mice have a human-like bile acid (BA) composition due to their inability to convert chenodeoxycholic acid (CDCA) into rodent-specific muricholic acids (MCAs). However, the hydrophobic BA composition in these animals is associated with liver pathology. Although Cyp2c70-ablation has been shown to alter gut microbiome composition, the impact of gut bacteria on liver pathology in Cyp2c70-/- mice remains to be established. Therefore, we treated young-adult male and female wild-type (WT) and Cyp2c70-/- mice with antibiotics (AB) with broad specificity to deplete the gut microbiota and assessed the consequences on BA metabolism and liver pathology. Female Cyp2c70-/- mice did not tolerate AB treatment, necessitating premature termination of the experiment. Male Cyp2c70-/- mice did tolerate AB but showed markedly augmented liver pathology after 6 weeks of treatment. Dramatic downregulation of hepatic Cyp8b1 expression (-99%) caused a reduction in the proportions of 12α-hydroxylated BAs in the circulating BA pools of AB-treated male Cyp2c70-/- mice. Interestingly, the resulting increased BA hydrophobicity strongly correlated with various indicators of liver pathology. Moreover, genetic inactivation of Cyp8b1 in livers of male Cyp2c70-/- mice increased liver pathology, while addition of ursodeoxycholic acid to the diet prevented weight loss and liver pathology in AB-treated female Cyp2c70-/- mice. In conclusion, depletion of gut microbiota in Cyp2c70-/- mice aggravates liver pathology at least in part by increasing the hydrophobicity of the circulating BA pool. These findings highlight that the potential implications of AB administration to cholestatic patients should be evaluated in a systematic manner.


Assuntos
Colestase , Microbioma Gastrointestinal , Humanos , Masculino , Animais , Feminino , Camundongos , Ácidos e Sais Biliares/metabolismo , Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Fígado/metabolismo , Antibacterianos , Camundongos Endogâmicos C57BL
2.
Artigo em Inglês | MEDLINE | ID: mdl-38583227

RESUMO

OBJECTIVES: Trace amines are powerful neuromodulators influencing the release and reuptake of catecholamines. These low concentrated endogenous amines impact mood, cognition, and hormone regulation. Dysregulation of trace amines have been associated with a variety of diseases, such as schizophrenia, Parkinson's disease, migraine, depression and more. Succesfull simultaneous quantification of trace amines, their precursors and metabolites would benefit both research and patient care. Since these compounds have various functional groups and are present in biological matrices with large concentration difference, their simultaneous quantification is an analytical challenge. Our goal was to develop a highly sensitive LC-MS/MS assay to simultaneously quantify trace amines, their precursors and metabolites in plasma. METHODS: Our method is based on a simple two-step in-matrix derivatization protocol: propionic anhydride (PA) and 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide (EDC) in combination with 2,2,2-trifluoroethylamine (TFEA) followed by online solid phase extraction combined with LC-MS/MS. Fifteen metabolites can be measured simultaneously, three precursors, eight trace amines and four metabolites. Validation of this method was performed according to international validation guidelines. The pre-analytical stability of trace amines was assessed. RESULTS: This novel method was successful in quantifying trace amines, their precursors, and metabolites in plasma. Using just 50 µl human plasma, we were able to accomplish limit of quantification for 2-phenylethylamine and N-methyl-phenylethylamine of 0.2 nmol/L and 0.1 nmol/L for tyramine and n-methyltyramine. Inter-and intra-assay imprecision was < 15 % for all analytes. Stability assessment showed susceptibility of certain trace amines e.g. 2-phenylethylamine and N-methyl-phenylethylamine to enzymatic degradation in plasma. The addition of the monoamine oxidase inhibitor pargyline to plasma prevented this enzymatic degradation. CONCLUSIONS: We developed a novel LC-MS/MS method that1) uses a new double derivatization technique, 2) is automated with online SPE, 3) uses far less sample volume then previous methods and 4) detects more components in the same sample (eight trace amines, three precursors, and four metabolites) with high specificity and selectivity. Furthermore, addition of MAO A/B inhibitor prevents degradation and guarantees more accurate quantification of trace amines.


Assuntos
Aminas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Aminas/sangue , Cromatografia Líquida/métodos , Limite de Detecção , Modelos Lineares , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA