Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(7): 1007-1014, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34713756

RESUMO

This study highlights the possibility of using brewers' grains (BSGs) for the successive extraction of the main lignocellulosic biopolymers, namely, cellulose, hemicelluloses and lignin. An exhaustive chemical characterisation revealed a variability of composition in distinct batches of BSGs, depending on their origin and the brewing process used. In particular, the protein content can vary from 13wt% to 23wt%, which is accompanied by a change in the hemicelluloses content from 9% to 23% (in the samples of our study). By applying a two-step aqueous treatment, involving an acid (1.25% v/v aq. H2SO4) and a base (3% w/v aq. NaOH) at a temperature of 120°C and fixed reaction time of a few tens of minutes (15-90 minutes), more than 80% of hemicelluloses could be recovered. Cellulose could be isolated at more than 68%, while a high purity lignin could be recovered from a lignin-rich fraction (70wt%). Our work also suggests that the variability of the chemical composition of these BSGs is a hindrance to achieving process standardisation and large-scale exploitation. The pooling of various materials is therefore not a recommended option, and the preliminary chemical analysis of the composition is therefore a prerequisite for an efficient extraction process.


Assuntos
Celulose , Lignina , Celulose/análise , Grão Comestível/química , Lignina/análise
2.
Pathogens ; 12(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36986304

RESUMO

The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO2-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA