Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Genomics ; 17(1): 884, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821059

RESUMO

BACKGROUND: Transposable elements (TEs) are mobile pieces of genetic information with high mutagenic potential for the host genome. Transposition is often neutral or deleterious but may also generate potentially adaptive genetic variation. This additional source of variation could be especially relevant in non-recombining species reproducing asexually. However, evidence is lacking to determine the relevance of TEs in plant asexual genome evolution and their associated effects. Here, we characterize the repetitive fraction of the genome of the common dandelion, Taraxacum officinale and compare it between five accessions from the same apomictic lineage. The main objective of this study is to evaluate the extent of within-lineage divergence attributed to TE content and activity. We examined the repetitive genomic contribution, diversity, transcription and methylation changes to characterize accession-specific TEs. RESULTS: Using low-coverage genomic sequencing, we report a highly heterogeneous TE compartment in the triploid apomict T. officinale representing up to 38.6 % of the homoploid genome. The repetitive compartment is dominated by LTR retrotransposon families accompanied by few non-LTR retrotransposons and DNA transposons. Up to half of the repeat clusters are biased towards very high read identity, indicating recent and potentially ongoing activity of these TE families. Interestingly, the five accessions are divided into two main clades based on their TE composition. Clade 2 is more dynamic than clade 1 with higher abundance of Gypsy Chromovirus sequences and transposons. Furthermore, a few low-abundant genomic TE clusters exhibit high level of transcription in two of the accessions analysed. Using reduced representation bisulfite sequencing, we detected 18.9 % of loci differentially methylated, of which 25.4 and 40.7 % are annotated as TEs or functional genes, respectively. Additionally, we show clear evidence for accession-specific TE families that are differentially transcribed and differentially methylated within the apomictic lineage, including one Copia Ale II LTR element and a PIF-Harbinger DNA transposon. CONCLUSION: We report here a very young and dynamic repetitive compartment that enhances divergence within one asexual lineage of T. officinale. We speculate that accession-specific TE families that are both transcriptionally and epigenetically variable are more prone to trigger changes in expression on nearby coding sequences. These findings emphasize the potential of TE-induced mutations on functional genes during asexual genome evolution.


Assuntos
Elementos de DNA Transponíveis , Variação Genética , Genoma de Planta , Genômica , Ilhas de CpG , Metilação de DNA , Heterogeneidade Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
2.
BMC Genomics ; 16: 991, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26597042

RESUMO

BACKGROUND: Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. RESULTS: Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. CONCLUSIONS: Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus.


Assuntos
Genômica , Lysobacter/genética , Lysobacter/metabolismo , Metabolômica , Lysobacter/fisiologia , Movimento , Família Multigênica , Rhizoctonia/fisiologia
3.
BMC Genomics ; 16: 1103, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26704531

RESUMO

BACKGROUND: Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities. RESULTS: In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7% of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities. CONCLUSIONS: Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.


Assuntos
Betaproteobacteria/genética , Genoma Bacteriano , Genômica , Característica Quantitativa Herdável , Sistemas de Secreção Bacterianos/genética , Bacteriófagos , Betaproteobacteria/metabolismo , Betaproteobacteria/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fungos , Ordem dos Genes , Genes Bacterianos , Ilhas Genômicas , Genômica/métodos , Metaboloma , Metabolômica , Interações Microbianas , Família Multigênica , Filogenia , Metabolismo Secundário , Transdução de Sinais
4.
BMC Infect Dis ; 13: 110, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23446317

RESUMO

BACKGROUND: Mycobacterium tuberculosis is characterised by limited genomic diversity, which makes the application of whole genome sequencing particularly attractive for clinical and epidemiological investigation. However, in order to confidently infer transmission events, an accurate knowledge of the rate of change in the genome over relevant timescales is required. METHODS: We attempted to estimate a molecular clock by sequencing 199 isolates from epidemiologically linked tuberculosis cases, collected in the Netherlands spanning almost 16 years. RESULTS: Multiple analyses support an average mutation rate of ~0.3 SNPs per genome per year. However, all analyses revealed a very high degree of variation around this mean, making the confirmation of links proposed by epidemiology, and inference of novel links, difficult. Despite this, in some cases, the phylogenetic context of other strains provided evidence supporting the confident exclusion of previously inferred epidemiological links. CONCLUSIONS: This in-depth analysis of the molecular clock revealed that it is slow and variable over short time scales, which limits its usefulness in transmission studies. However, the superior resolution of whole genome sequencing can provide the phylogenetic context to allow the confident exclusion of possible transmission events previously inferred via traditional DNA fingerprinting techniques and epidemiological cluster investigation. Despite the slow generation of variation even at the whole genome level we conclude that the investigation of tuberculosis transmission will benefit greatly from routine whole genome sequencing.


Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose Pulmonar/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Taxa de Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Países Baixos/epidemiologia , Polimorfismo de Nucleotídeo Único , Fatores de Tempo , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia
5.
Nucleic Acids Res ; 39(Web Server issue): W339-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21672958

RESUMO

Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Genes Bacterianos , Genes Fúngicos , Software , Bactérias/enzimologia , Bactérias/genética , Vias Biossintéticas/genética , Fungos/enzimologia , Fungos/genética , Genoma Bacteriano , Genoma Fúngico , Genômica , Internet , Anotação de Sequência Molecular , Peptídeo Sintases/química , Policetídeo Sintases/química , Especificidade por Substrato
6.
ISME J ; 12(9): 2307-2321, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29899517

RESUMO

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


Assuntos
Burkholderiaceae/metabolismo , Doenças das Plantas/microbiologia , Microbiologia do Solo , Enxofre/metabolismo , Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , Liases de Carbono-Enxofre/genética , Ecossistema , Fungos/fisiologia , Proteínas Ferro-Enxofre/genética , Consórcios Microbianos , Oxirredutases/genética , Filogenia , Solo
7.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718180

RESUMO

Fusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction with other microorganisms and contributes to its pathogenicity on plants. The genome revealed the presence of two terpene synthases, trichodiene and longiborneol synthase, which generate an array of volatile terpenes. Furthermore, we identified two gene clusters, deoxynivalenol and zearalenone, which encode for the production of mycotoxins. Linking the production of mycotoxins with in vitro bioassays, we found high virulence of F. culmorum PV on maize, barley and wheat. By using ultra-performance liquid chromatography-mass spectrometry, we confirmed several compounds important for the behaviour and lifestyle of F. culmorum. This research sets the basis for future studies in microbe-plant interactions.


Assuntos
Alquil e Aril Transferases/genética , Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/genética , Metaboloma/fisiologia , Cicloexenos/metabolismo , Grão Comestível/microbiologia , Sedimentos Geológicos/microbiologia , Hordeum/microbiologia , Micotoxinas/biossíntese , Doenças das Plantas/microbiologia , Sesquiterpenos/metabolismo , Microbiologia do Solo , Tricotecenos/metabolismo , Triticum/microbiologia , Virulência
8.
Water Res ; 119: 276-287, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28477543

RESUMO

Ongoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state. These so called critical nutrient loads for lakes depend on the shape of the load-response curve. Due to spatial variation within lakes, load-response curves and therefore critical nutrient loads could vary throughout the lake. In this study we determine spatial patterns in critical nutrient loads for Lake Taihu (China) with a novel modelling approach called Spatial Ecosystem Bifurcation Analysis (SEBA). SEBA evaluates the impact of the lake's total external nutrient load on the local lake dynamics, resulting in a map of critical nutrient loads for different locations throughout the lake. Our analysis shows that the largest part of Lake Taihu follows a nonlinear load-response curve without hysteresis. The corresponding critical nutrient loads vary within the lake and depend on management goals, i.e. the maximum allowable chlorophyll concentration. According to our model, total nutrient loads need to be more than halved to reach chlorophyll-a concentrations of 30-40 µg L-1 in most sections of the lake. To prevent phytoplankton blooms with 20 µg L-1 chlorophyll-a throughout Lake Taihu, both phosphorus and nitrogen loads need a nearly 90% reduction. We conclude that our approach is of great value to determine critical nutrient loads of lake ecosystems such as Taihu and likely of spatially heterogeneous ecosystems in general.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton , China , Lagos , Fósforo
9.
Microb Biotechnol ; 10(4): 910-925, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28557379

RESUMO

Recent studies indicated that the production of secondary metabolites by soil bacteria can be triggered by interspecific interactions. However, little is known to date about interspecific interactions between Gram-positive and Gram-negative bacteria. In this study, we aimed to understand how the interspecific interaction between the Gram-positive Paenibacillus sp. AD87 and the Gram-negative Burkholderia sp. AD24 affects the fitness, gene expression and the production of soluble and volatile secondary metabolites of both bacteria. To obtain better insight into this interaction, transcriptome and metabolome analyses were performed. Our results revealed that the interaction between the two bacteria affected their fitness, gene expression and the production of secondary metabolites. During interaction, the growth of Paenibacillus was not affected, whereas the growth of Burkholderia was inhibited at 48 and 72 h. Transcriptome analysis revealed that the interaction between Burkholderia and Paenibacillus caused significant transcriptional changes in both bacteria as compared to the monocultures. The metabolomic analysis revealed that the interaction increased the production of specific volatile and soluble antimicrobial compounds such as 2,5-bis(1-methylethyl)-pyrazine and an unknown Pederin-like compound. The pyrazine volatile compound produced by Paenibacillus was subjected to bioassays and showed strong inhibitory activity against Burkholderia and a range of plant and human pathogens. Moreover, strong additive antimicrobial effects were observed when soluble extracts from the interacting bacteria were combined with the pure 2,5-bis(1-methylethyl)-pyrazine. The results obtained in this study highlight the importance to explore bacterial interspecific interactions to discover novel secondary metabolites and to perform simultaneously metabolomics of both, soluble and volatile compounds.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibiose , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Burkholderia/fisiologia , Paenibacillus/fisiologia , Burkholderia/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Humanos , Metabolômica , Paenibacillus/crescimento & desenvolvimento , Metabolismo Secundário , Compostos Orgânicos Voláteis/análise
10.
BMC Bioinformatics ; 7: 120, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16524462

RESUMO

BACKGROUND: In the current era of high throughput genomics a major challenge is the genome-wide identification of target genes for specific transcription factors. Chromatin immunoprecipitation (ChIP) allows the isolation of in vivo binding sites of transcription factors and provides a powerful tool for examining gene regulation. Crosslinked chromatin is immunoprecipitated with antibodies against specific transcription factors, thus enriching for sequences bound in vivo by these factors in the immunoprecipitated DNA. Cloning and sequencing the immunoprecipitated sequences allows identification of transcription factor target genes. Routinely, thousands of such sequenced clones are used in BLAST searches to map their exact location in the genome and the genes located in the vicinity. These genes represent potential targets of the transcription factor of interest. Such bioinformatics analysis is very laborious if performed manually and for this reason there is a need for developing bioinformatic tools to automate and facilitate it. RESULTS: In order to facilitate this analysis we generated TF Target Mapper (Transcription Factor Target Mapper). TF Target Mapper is a BLAST search tool allowing rapid extraction of annotated information on genes around each hit. It combines sequence cleaning/filtering, pattern searching and BLAST searches with extraction of information on genes located around each BLAST hit and comparisons of the output list of genes or gene ontology IDs with user-implemented lists. We successfully applied and tested TF Target Mapper to analyse sequences bound in vivo by the transcription factor GATA-1. We show that TF Target Mapper efficiently extracted information on genes around ChIPed sequences, thus identifying known (e.g. alpha-globin and zeta-globin) and potentially novel GATA-1 gene targets. CONCLUSION: TF Target Mapper is a very efficient BLAST search tool that allows the rapid extraction of annotated information on the genes around each hit. It can contribute to the comprehensive bioinformatic transcriptome/regulome analysis, by providing insight into the mechanisms of action of specific transcription factors, thus helping to elucidate the pathways these factors regulate.


Assuntos
Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico/métodos , Bases de Dados de Proteínas , Análise de Sequência de DNA/métodos , Software , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sistemas de Gerenciamento de Base de Dados , Armazenamento e Recuperação da Informação/métodos , Dados de Sequência Molecular , Ligação Proteica
11.
Int J Food Microbiol ; 228: 1-9, 2016 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-27077825

RESUMO

DNA based microbial community profiling of food samples is confounded by the presence of DNA derived from membrane compromised (dead or injured) cells. Selective amplification of DNA from viable (intact) fraction of the community by propidium monoazide (PMA) treatment could circumvent this problem. Gouda cheese manufacturing is a proper model to evaluate the use of PMA for selective detection of intact cells since large fraction of membrane compromised cells emerges as a background in the cheese matrix during ripening. In this study, the effect of PMA on cheese community profiles was evaluated throughout manufacturing and ripening using quantitative PCR (qPCR). PMA effectively inhibited the amplification of DNA derived from membrane compromised cells and enhanced the analysis of the intact fraction residing in the cheese samples. Furthermore, a two-step protocol, which involves whole genome amplification (WGA) to enrich the DNA not modified with PMA and subsequent sequencing, was developed for the selective metagenome sequencing of viable fraction in the Gouda cheese microbial community. The metagenome profile of PMA treated cheese sample reflected the viable community profile at that time point in the cheese manufacturing.


Assuntos
Azidas/farmacologia , Queijo/microbiologia , Microbiologia de Alimentos/métodos , Viabilidade Microbiana , Propídio/análogos & derivados , Reagentes de Ligações Cruzadas/farmacologia , DNA Bacteriano/genética , Propídio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
12.
Nat Commun ; 7: 10474, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26805030

RESUMO

For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.


Assuntos
Evolução Biológica , Genoma , Passeriformes/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Cognição , Metilação de DNA , Epigênese Genética , Humanos , Masculino , Modelos Animais , Neurônios/metabolismo , Passeriformes/fisiologia , Fenótipo
13.
BMC Bioinformatics ; 6: 192, 2005 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16048644

RESUMO

BACKGROUND: SRS (Sequence Retrieval System) has proven to be a valuable platform for storing, linking, and querying biological databases. Due to the availability of a broad range of different scientific databases in SRS, it has become a useful platform to incorporate and mine microarray data to facilitate the analyses of biological questions and non-hypothesis driven quests. Here we report various solutions and tools for integrating and mining annotated expression data in SRS. RESULTS: We devised an Auto-Upload Tool by which microarray data can be automatically imported into SRS. The dataset can be linked to other databases and user access can be set. The linkage comprehensiveness of microarray platforms to other platforms and biological databases was examined in a network of scientific databases. The stored microarray data can also be made accessible to external programs for further processing. For example, we built an interface to a program called Venn Mapper, which collects its microarray data from SRS, processes the data by creating Venn diagrams, and saves the data for interpretation. CONCLUSION: SRS is a useful database system to store, link and query various scientific datasets, including microarray data. The user-friendly Auto-Upload Tool makes SRS accessible to biologists for linking and mining user-owned databases.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Coleta de Dados , Perfilação da Expressão Gênica/métodos , Interface Usuário-Computador
14.
Stand Genomic Sci ; 10: 68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405503

RESUMO

Plant necrotrophic Dickeya spp. are among the top ten most devastating bacterial plant pathogens able to infect a number of different plant species worldwide including economically important crops. Little is known of the lytic bacteriophages infecting Dickeya spp. A broad host lytic bacteriophage ϕD3 belonging to the family Myoviridae and order Caudovirales has been isolated in our previous study. This report provides detailed information of its annotated genome, structural proteome and phylogenetic relationships with known lytic bacteriophages infecting species of the Enterobacteriaceae family.

15.
Genome Announc ; 3(1)2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25573943

RESUMO

We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads.

16.
Front Microbiol ; 6: 1495, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779150

RESUMO

There is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages. The metabolomics analysis of the tested fungal and oomycetal strains revealed different volatile profiles dependent on the age of the strains and nutrient conditions. Furthermore, we screened the phenotypic responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a unique volatile blend, including several terpenes. Four of these terpenes were selected for further tests to investigate if they influence bacterial motility. Indeed, these terpenes induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner. Overall the results of this work revealed that bacteria are able to sense and respond to fungal volatiles giving further evidence to the suggested importance of volatiles as signaling molecules in fungal-bacterial interactions.

17.
PLoS One ; 10(3): e0119812, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803051

RESUMO

Pectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide. This study reports on the isolation and characterization of broad host lytic bacteriophages able to infect the dominant Pectobacterium spp. and Dickeya spp. affecting potato in Europe viz. Pectobacterium carotovorum subsp. carotovorum (Pcc), P. wasabiae (Pwa) and Dickeya solani (Dso) with the objective to assess their potential as biological disease control agents. Two lytic bacteriophages infecting stains of Pcc, Pwa and Dso were isolated from potato samples collected from two potato fields in central Poland. The ΦPD10.3 and ΦPD23.1 phages have morphology similar to other members of the Myoviridae family and the Caudovirales order, with a head diameter of 85 and 86 nm and length of tails of 117 and 121 nm, respectively. They were characterized for optimal multiplicity of infection, the rate of adsorption to the Pcc, Pwa and Dso cells, the latent period and the burst size. The phages were genotypically characterized with RAPD-PCR and RFLP techniques. The structural proteomes of both phages were obtained by fractionation of phage proteins by SDS-PAGE. Phage protein identification was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Pulsed-field gel electrophoresis (PFGE), genome sequencing and comparative genome analysis were used to gain knowledge of the length, organization and function of the ΦPD10.3 and ΦPD23.1 genomes. The potential use of ΦPD10.3 and ΦPD23.1 phages for the biocontrol of Pectobacterium spp. and Dickeya spp. infections in potato is discussed.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Enterobacteriaceae/virologia , Pectobacterium/virologia , Proteômica , Adsorção , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Tubérculos/microbiologia , Tubérculos/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia
18.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23405300

RESUMO

Here, we report the complete genome of Lactococcus lactis subsp. cremoris UC509.9, an Irish dairy starter. The circular chromosome of L. lactis UC509.9 represents the smallest among those of the sequenced lactococcal strains, while its large complement of eight plasmids appears to be a reflection of its adaptation to the dairy environment.

19.
ISME J ; 7(11): 2126-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23823494

RESUMO

Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Variação Genética , Lactococcus lactis/fisiologia , Leuconostoc/fisiologia , Bacteriófagos/fisiologia , Genoma Bacteriano/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/virologia , Leuconostoc/genética , Leuconostoc/metabolismo , Leuconostoc/virologia , Plasmídeos/genética , RNA Ribossômico 16S/genética
20.
Arthritis Rheum ; 58(11): 3471-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18975327

RESUMO

OBJECTIVE: Repeated injection of streptococcal cell wall (SCW) fragments results in chronic arthritis in mice. The objective of this study was to identify genes and pathways that determine disease progression based on gene expression profiling in this model. METHODS: Chronic arthritis was induced in mice by 4 injections of SCW fragments. RNA samples were isolated from synovial tissue obtained at various time points and were analyzed using mouse genome array and quantitative reverse transcription-polymerase chain reaction techniques. The functional role of potential key genes was evaluated in mice with specific gene deletions. RESULTS: Gene expression analyses revealed a shift in molecular signature. In contrast to an up-regulation of the inflammatory response pathway, the pathways involved in oxidative metabolism were significantly down-regulated during the chronic phase of arthritis. Since oxidative metabolism determines the mode of macrophage activation, we investigated phenotype switching in macrophages. Markers of alternatively activated macrophages, such as arginase 1, were at maximal levels during acute inflammation. In contrast, induction of markers of classically activated macrophages (M1), such as interleukin-1beta (IL-1beta) and inducible nitric oxide synthase (iNOS), was relatively low during the acute phase of disease, but highly increased toward the chronic phase. M1 polarization during the chronic phase was accompanied by a Th1 signature, characterized by IL-12p40, IL-12p35, and interferon-gamma. However, the absence of IL-12p40, but not IL-12p35, significantly inhibited the chronic phase of arthritis and was marked by a reduction in IL-17 and iNOS levels, as well as restored expression of oxidative metabolism genes. CONCLUSION: M1 polarization accompanied by a decline in oxidative metabolism determine the chronic phase of arthritis. IL-12p40, most likely acting through the IL-23/IL-17 axis, plays a critical role in this process.


Assuntos
Artrite Experimental/fisiopatologia , Subunidade p40 da Interleucina-12/fisiologia , Ativação de Macrófagos/fisiologia , Doença Aguda , Animais , Artrite Experimental/metabolismo , Biomarcadores/análise , Doença Crônica , Regulação para Baixo , Expressão Gênica , Interleucina-17/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA