Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024132

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo
2.
BMC Cardiovasc Disord ; 22(1): 122, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317745

RESUMO

Stem-cell derived in vitro cardiac models have provided profound insights into mechanisms in cardiac development and disease. Efficient differentiation of specific cardiac cell types from human pluripotent stem cells using a three-step Wnt signaling modulation has been one of the major discoveries that has enabled personalized cardiovascular disease modeling approaches. Generation of cardiac cell types follow key development stages during embryogenesis, they intuitively are excellent models to study cardiac tissue patterning in primitive cardiac structures. Here, we provide a brief overview of protocols that have laid the foundation for derivation of stem-cell derived three-dimensional cardiac models. Further this article highlights features and utility of the models to distinguish the advantages and trade-offs in modeling embryonic development and disease processes. Finally, we discuss the challenges in improving robustness in the current models and utilizing developmental principles to bring higher physiological relevance. In vitro human cardiac models are complimentary tools that allow mechanistic interrogation in a reductionist way. The unique advantage of utilizing patient specific stem cells and continued improvements in generating reliable organoid mimics of the heart will boost predictive power of these tools in basic and translational research.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Coração , Humanos , Organoides/fisiologia
3.
Annu Rev Med ; 70: 45-59, 2019 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-30216732

RESUMO

Pulmonary arterial hypertension (PAH) is a pulmonary vasculopathy that causes right ventricular dysfunction and exercise limitation and progresses to death. New findings from translational studies have suggested alternative pathways for treatment. These avenues include sex hormones, genetic abnormalities and DNA damage, elastase inhibition, metabolic dysfunction, cellular therapies, and anti-inflammatory approaches. Both novel and repurposed compounds with rationale from preclinical experimental models and human cells are now in clinical trials in patients with PAH. Findings from these studies will elucidate the pathobiology of PAH and may result in clinically important improvements in outcome.


Assuntos
Anti-Hipertensivos/uso terapêutico , Sistemas de Liberação de Medicamentos , Insuficiência Cardíaca/prevenção & controle , Hipertensão Pulmonar/terapia , Medicina de Precisão/tendências , Terapia Combinada , Progressão da Doença , Feminino , Previsões , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/epidemiologia , Masculino , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Análise de Sobrevida
4.
Am J Respir Crit Care Med ; 201(2): 148-157, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31513751

RESUMO

Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.


Assuntos
Transtornos Cerebrovasculares/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Nefropatias/fisiopatologia , Doenças Musculares/fisiopatologia , Hipertensão Arterial Pulmonar/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Artérias Brônquicas/patologia , Artérias Brônquicas/fisiopatologia , Circulação Cerebrovascular , Doença da Artéria Coronariana/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Nefropatias/metabolismo , Doenças Musculares/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Músculos Respiratórios/fisiopatologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/fisiopatologia , Vasodilatação , Disfunção Ventricular Direita/metabolismo
5.
Am J Respir Crit Care Med ; 202(10): 1445-1457, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634060

RESUMO

Rationale: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored.Objectives: To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRß (platelet-derived growth factor receptor ß) signaling pathway and to investigate its role in PAH.Methods: Pericytes and pulmonary arterial smooth muscle cells exposed to hypoxia and derived from patients with idiopathic PAH were analyzed with RNA sequencing. TYKRIL knockdown was performed in above-mentioned human primary cells and in precision-cut lung slices derived from patients with PAH.Measurements and Main Results: Using RNA sequencing data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells exposed to hypoxia and derived from patients with idiopathic PAH. TYKRIL knockdown reversed the proproliferative (n = 3) and antiapoptotic (n = 3) phenotype induced under hypoxic and idiopathic PAH conditions. Owing to the poor species conservation of TYKRIL, ex vivo studies were performed in precision-cut lung slices from patients with PAH. Knockdown of TYKRIL in precision-cut lung slices decreased the vascular remodeling (n = 5). The number of proliferating cell nuclear antigen-positive cells in the vessels was decreased and the number of terminal deoxynucleotide transferase-mediated dUTP nick end label-positive cells in the vessels was increased in the LNA (locked nucleic acid)-treated group compared with control. Expression of PDGFRß, a key player in PAH, was found to strongly correlate with TYKRIL expression in the patient samples (n = 12), and TYKRIL knockdown decreased PDGFRß expression (n = 3). From the transcription factor-screening array, it was observed that TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRß. RNA immunoprecipitation using various p53 mutants demonstrated that TYKRIL binds to the N-terminal of p53 (an important region for p300 interaction with p53). The proximity ligation assay revealed that TYKRIL interferes with the p53-p300 interaction (n = 3) and regulates p53 nuclear translocation.Conclusions: TYKRIL plays an important role in PAH by regulating the p53/PDGFRß axis.


Assuntos
Expressão Gênica , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Proteínas Tirosina Quinases/genética , RNA Longo não Codificante , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Am J Respir Cell Mol Biol ; 62(6): 747-759, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32084325

RESUMO

Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.


Assuntos
Quimiocina CXCL12/fisiologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Animais , Antígenos/análise , Benzilaminas , Divisão Celular , Linhagem da Célula , Quimiocina CXCL12/genética , Doença Crônica , Ciclamos , DNA Nucleotidilexotransferase/análise , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/prevenção & controle , Hipóxia/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteoglicanas/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores CXCR4/antagonistas & inibidores , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Vasoconstrição
7.
Circulation ; 139(14): 1710-1724, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586764

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS: Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS: Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS: We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.


Assuntos
Movimento Celular , Células Endoteliais/metabolismo , Pericitos/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Proteína Wnt-5a/deficiência , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Hipóxia Celular , Polaridade Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Exossomos/metabolismo , Exossomos/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Comunicação Parácrina , Pericitos/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Ratos , Via de Sinalização Wnt , Proteína Wnt-5a/genética
10.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L443-L460, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097426

RESUMO

Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.


Assuntos
Insuficiência Cardíaca/etiologia , Hipertensão Pulmonar/complicações , Neovascularização Patológica , Disfunção Ventricular Direita/etiologia , Remodelação Ventricular , Animais , Humanos
11.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L967-L983, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417823

RESUMO

Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.


Assuntos
Antagonistas dos Receptores de Endotelina/efeitos adversos , Hipertensão Pulmonar , Inibidores da Fosfodiesterase 5/efeitos adversos , Circulação Pulmonar/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Endotelina/uso terapêutico , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Inibidores da Fosfodiesterase 5/uso terapêutico
12.
FASEB J ; 31(3): 868-881, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27903619

RESUMO

The cytokine IL-10 has potent antifibrotic effects in models of adult fibrosis, but the mechanisms of action are unclear. Here, we report a novel finding that IL-10 triggers a signal transducer and activator of transcription 3 (STAT3)-dependent signaling pathway that regulates hyaluronan (HA) metabolism and drives adult fibroblasts to synthesize an HA-rich pericellular matrix, which mimics the fetal regenerative wound healing phenotype with reduced fibrosis. By using cre-lox-mediated novel, inducible, fibroblast-, keratinocyte-, and wound-specific STAT3-knockdown postnatal mice-plus syngeneic fibroblast cell-transplant models-we demonstrate that the regenerative effects of IL-10 in postnatal wounds are dependent on HA synthesis and fibroblast-specific STAT3-dependent signaling. The importance of IL-10-induced HA synthesis for regenerative wound healing is demonstrated by inhibition of HA synthesis in a murine wound model by administering 4-methylumbelliferone. Although IL-10 and STAT3 signaling were intact, the antifibrotic repair phenotype that is induced by IL-10 overexpression was abrogated in this model. Our data show a novel role for IL-10 beyond its accepted immune-regulatory mechanism. The opportunity for IL-10 to regulate a fibroblast-specific formation of a regenerative, HA-rich wound extracellular matrix may lead to the development of innovative therapies to attenuate postnatal fibrosis in organ systems or diseases in which dysregulated inflammation and HA intersect.-Balaji, S., Wang, X., King, A., Le, L. D., Bhattacharya, S. S., Moles, C. M., Butte, M. J., de Jesus Perez, V. A., Liechty, K. W., Wight, T. N., Crombleholme, T. M., Bollyky, P. L., Keswani, S. G. Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling.


Assuntos
Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Cicatrização , Animais , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Interleucina-10/genética , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/genética
13.
Arterioscler Thromb Vasc Biol ; 37(8): 1559-1569, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619995

RESUMO

OBJECTIVE: We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS: Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß1 (TGFß1). Thus, we considered whether BMPs like TGFß1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFß1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFß1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFß1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFß1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFß1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS: Disrupting BMPR2 impairs TGFß1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Tecido Elástico/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Remodelação Vascular , Animais , Proteína Morfogenética Óssea 4/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Elastina/genética , Elastina/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Transfecção
15.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L252-L266, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473326

RESUMO

Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH), but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. Although no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV; rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared with healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Metanfetamina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Am J Pathol ; 186(9): 2500-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27456128

RESUMO

Reduced endothelial-pericyte interactions are linked to progressive small vessel loss in pulmonary arterial hypertension (PAH), but the molecular mechanisms underlying this disease remain poorly understood. To identify relevant gene candidates associated with aberrant pericyte behavior, we performed a transcriptome analysis of patient-derived donor control and PAH lung pericytes followed by functional genomics analysis. Compared with donor control cells, PAH pericytes had significant enrichment of genes involved in various metabolic processes, the top hit being PDK4, a gene coding for an enzyme that suppresses mitochondrial activity in favor of glycolysis. Given reports that link reduced mitochondrial activity with increased PAH cell proliferation, we hypothesized that increased PDK4 is associated with PAH pericyte hyperproliferation and reduced endothelial-pericyte interactions. We found that PDK4 gene and protein expression was significantly elevated in PAH pericytes and correlated with reduced mitochondrial metabolism, higher rates of glycolysis, and hyperproliferation. Importantly, reducing PDK4 levels restored mitochondrial metabolism, reduced cell proliferation, and improved endothelial-pericyte interactions. To our knowledge, this is the first study that documents significant differences in gene expression between human donor control and PAH lung pericytes and the link between mitochondrial dysfunction and aberrant endothelial-pericyte interactions in PAH. Comprehensive characterization of these candidate genes could provide novel therapeutic targets to improve endothelial-pericyte interactions and prevent small vessel loss in PAH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/patologia , Pericitos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Western Blotting , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transcriptoma
18.
Am J Pathol ; 185(1): 69-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447046

RESUMO

Pericytes are perivascular cells localized to capillaries that promote vessel maturation, and their absence can contribute to vessel loss. Whether impaired endothelial-pericyte interaction contributes to small vessel loss in pulmonary arterial hypertension (PAH) is unclear. Using 3G5-specific, immunoglobulin G-coated magnetic beads, we isolated pericytes from the lungs of healthy subjects and PAH patients, followed by lineage validation. PAH pericytes seeded with healthy pulmonary microvascular endothelial cells failed to associate with endothelial tubes, resulting in smaller vascular networks compared to those with healthy pericytes. After the demonstration of abnormal polarization toward endothelium via live-imaging and wound-healing studies, we screened PAH pericytes for abnormalities in the Wnt/planar cell polarity (PCP) pathway, which has been shown to regulate cell motility and polarity in the pulmonary vasculature. PAH pericytes had reduced expression of frizzled 7 (Fzd7) and cdc42, genes crucial for Wnt/PCP activation. With simultaneous knockdown of Fzd7 and cdc42 in healthy pericytes in vitro and in a murine model of angiogenesis, motility and polarization toward pulmonary microvascular endothelial cells were reduced, whereas with restoration of both genes in PAH pericytes, endothelial-pericyte association was improved, with larger vascular networks. These studies suggest that the motility and polarity of pericytes during pulmonary angiogenesis are regulated by Wnt/PCP activation, which can be targeted to prevent vessel loss in PAH.


Assuntos
Polaridade Celular , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Neovascularização Patológica , Pericitos/citologia , Proteínas Wnt/metabolismo , Adolescente , Adulto , Animais , Movimento Celular , Criança , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/citologia , Feminino , Receptores Frizzled , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/metabolismo , Imunoglobulina G/química , Pulmão/irrigação sanguínea , Magnetismo , Masculino , Camundongos , Camundongos SCID , Microcirculação , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Heart Fail Rev ; 21(3): 239-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26694808

RESUMO

Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , MicroRNAs/genética , Animais , Modelos Animais de Doenças , Exposição Ambiental , Regulação da Expressão Gênica , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Ratos , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA