Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 443-449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658754

RESUMO

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Assuntos
Antineoplásicos , Descoberta de Drogas , Inibidores Enzimáticos , Instabilidade de Microssatélites , Neoplasias , Mutações Sintéticas Letais , Helicase da Síndrome de Werner , Animais , Feminino , Humanos , Camundongos , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Domínios Proteicos , Reprodutibilidade dos Testes , Supressão Genética , Mutações Sintéticas Letais/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Pharmacol ; 93(2): 109-118, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203519

RESUMO

S1P1 (sphingosine-1-phosphate receptor 1) agonists prevent lymphocyte egress from secondary lymphoid organs and cause a reduction in the number of circulating blood lymphocytes. We hypothesized that S1P1 receptor modulators with pathway-selective signaling properties could help to further elucidate the molecular mechanisms involved in lymphocyte trapping. A proprietary S1P1 receptor modulator library was screened for compounds with clear potency differences in ß-arrestin recruitment and G protein alpha i subunit (G αi) protein-mediated signaling. We describe here the structure-activity relationships of highly potent S1P1 modulators with apparent pathway selectivity for ß-arrestin recruitment. The most differentiated compound, D3-2, displayed a 180-fold higher potency in the ß-arrestin recruitment assay (EC50 0.9 nM) compared with the G αi-activation assay (167 nM), whereas ponesimod, a S1P1 modulator that is currently in advanced clinical development in multiple sclerosis, was equipotent in both assays (EC50 1.5 and 1.1 nM, respectively). Using these novel compounds as pharmacological tools, we showed that although a high potency in ß-arrestin recruitment is required to fully internalize S1P1 receptors, the potency in inducing G αi signaling determines the rate of receptor internalization in vitro. In contrast to ponesimod, the compound D3-2 did not reduce the number or circulating lymphocytes in rats despite high plasma exposures. Thus, for rapid and maximal S1P1 receptor internalization a high potency in both G αi signaling and ß-arrestin recruitment is mandatory and this translates into efficient reduction of the number of circulating lymphocytes in vivo.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Linfócitos/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/agonistas , Esfingosina/farmacologia , Animais , Células CHO , Cricetulus , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Células HeLa , Humanos , Contagem de Linfócitos , Linfócitos/classificação , Masculino , Ratos Wistar , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , beta-Arrestinas/metabolismo
3.
Xenobiotica ; 48(7): 704-719, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28737453

RESUMO

1. The metabolism of selexipag has been studied in vivo in man and the main excreted metabolites were identified. Also, metabolites circulating in human plasma have been structurally identified and quantified. 2. The main metabolic pathway of selexipag in man is the formation of the active metabolite ACT-333679. Other metabolic pathways include oxidation and dealkylation reactions. All primary metabolites undergo subsequent hydrolysis of the sulphonamide moiety to their corresponding acids. ACT-333679 undergoes conjugation with glucuronic acid and aromatic hydroxylation to P10, the main metabolite detected in human faeces. 3. The formation of the active metabolite ACT-333679 is catalysed by carboxylesterases, while the oxidation and dealkylation reactions are metabolized by CYP2C8 and CYP3A4. CYP2C8 is the only P450 isoform catalysing the aromatic hydroxylation to P10. CYP2C8 together with CYP3A4 are also involved in the formation of several minor ACT-333679 metabolites. UGT1A3 and UGT2B7 catalyse the glucuronidation of ACT-333679. 4. The potential of selexipag to inhibit or induce cytochrome P450 enzymes or drug transport proteins was studied in vitro. Selexipag is an inhibitor of CYP2C8 and CYP2C9 and induces CYP3A4 and CYP2C9 in vitro. Also, selexipag inhibits the transporters OATP1B1, OATP1B3, OAT1, OAT3, and BCRP. However, due to its low dose and relatively low unbound exposure, selexipag has a low potential for causing drug-drug interactions.


Assuntos
Acetamidas/metabolismo , Acetamidas/farmacologia , Pirazinas/metabolismo , Pirazinas/farmacologia , Receptores de Epoprostenol/agonistas , Acetamidas/sangue , Acetamidas/química , Acetatos/farmacologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Esterases/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Metabolômica , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Pirazinas/sangue , Pirazinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Epoprostenol/metabolismo , Proteínas Recombinantes/metabolismo
4.
J Pharmacol Exp Ther ; 362(3): 489-503, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28663311

RESUMO

The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX1 and OX2) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Descoberta de Drogas/métodos , Imidazóis/farmacocinética , Antagonistas dos Receptores de Orexina/farmacocinética , Pirrolidinas/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Cães , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Masculino , Ratos , Ratos Wistar
5.
Chimia (Aarau) ; 71(10): 722-729, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070417

RESUMO

We describe the discovery and optimization of new, brain-penetrant T-type calcium channel blockers. We present optimized compounds with excellent efficacy in a rodent model of generalized absence-like epilepsy. Along the fine optimization of a chemical series with a pharmacological target located in the CNS (target potency, brain penetration, and solubility), we successfully identified an Ames negative aminopyrazole as putative metabolite of this compound series. Our efforts culminated in the selection of compound 20, which was elected as a preclinical candidate.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/efeitos dos fármacos , Descoberta de Drogas , Epilepsia Generalizada/tratamento farmacológico , Animais , Canais de Cálcio Tipo T/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Ratos
6.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701420

RESUMO

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Acrilamidas/farmacocinética , Animais , Antimaláricos/farmacocinética , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacocinética , Plasmodium berghei/efeitos dos fármacos
7.
Antimicrob Agents Chemother ; 59(2): 935-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421475

RESUMO

Emerging resistance to antimalarial agents raises the need for new drugs. ACT-451840 is a new compound with potent activity against sensitive and resistant Plasmodium falciparum strains. This was a first-in-humans single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of ACT-451840 across doses of 10, 50, 200, and 500 mg in healthy male subjects. In the 200- and 500-mg dose groups, the effect of food was investigated, and antimalarial activity was assessed using an ex vivo bioassay with P. falciparum. No (serious) adverse events leading to discontinuation were reported. At the highest dose level, the peak drug concentration (Cmax) and the area under the plasma concentration-time curve from zero to infinity of ACT-451840 under fasted conditions reached 11.9 ng/ml and 100.6 ng·h/ml, respectively, and these were approximately 13-fold higher under fed conditions. Food did not affect the half-life (approximately 34 h) of the drug, while the Cmax was attained 2.0 and 3.5 h postdose under fasted and fed conditions, respectively. The plasma concentrations estimated by the bioassay were approximately 4-fold higher than those measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several potentially active metabolites were also identified. ACT-451840 was well tolerated across all doses. Exposure to ACT-451840 significantly increased with food. The bioassay indicated the presence of circulating active metabolites. (This study has been registered at ClinicalTrials.gov under registration no. NCT02186002.).


Assuntos
Acrilamidas/efeitos adversos , Acrilamidas/farmacocinética , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Adolescente , Adulto , Método Duplo-Cego , Eletrocardiografia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Pharmacol Exp Ther ; 350(1): 130-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769543

RESUMO

Treatment of pulmonary arterial hypertension with the endothelin receptor antagonist bosentan has been associated with transient increases in liver transaminases. Mechanistically, bosentan inhibits the bile salt export pump (BSEP) leading to an intrahepatic accumulation of cytotoxic bile salts, which eventually results in hepatocellular damage. BSEP inhibition by bosentan is amplified by its accumulation in the liver as bosentan is a substrate of organic anion-transporting polypeptide (OATP) transport proteins. The novel endothelin receptor antagonist macitentan shows a superior liver safety profile. Introduction of the less acidic sulfamide moiety and increased lipophilicity yield a hepatic disposition profile different from other endothelin receptor antagonists. Passive diffusion rather than OATP-mediated uptake is the driving force for macitentan uptake into the liver. Interaction with the sodium taurocholate cotransporting polypeptide and BSEP transport proteins involved in hepatic bile salt homeostasis is therefore limited due to the low intrahepatic drug concentrations. Evidence for this conclusion is provided by in vitro experiments in drug transporter-expressing cell lines, acute and long-term studies in rats and dogs, absence of plasma bile salt changes in healthy human volunteers after multiple dosing, and finally the liver safety profile of macitentan in the completed phase III morbidity/mortality SERAPHIN (Study with an Endothelin Receptor Antagonist in Pulmonary Arterial Hypertension to Improve Clinical Outcome) trial.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Ácidos e Sais Biliares/sangue , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/efeitos dos fármacos , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade , Simportadores/efeitos dos fármacos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bosentana , Linhagem Celular , Cricetinae , Cães , Relação Dose-Resposta a Droga , Antagonistas dos Receptores de Endotelina , Hepatócitos , Humanos , Masculino , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Pirimidinas/efeitos adversos , Ratos , Sulfonamidas/efeitos adversos
9.
J Med Chem ; 67(10): 8077-8098, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727100

RESUMO

Migration of immune cells to sites of inflammation is a critical step in the body's response to infections but also during autoimmune flares. Chemokine receptors, members of the GPCR receptors, are instrumental in directing specific cell types to their target organs. Herein, we describe a highly potent small molecule antagonist of the chemokine receptor CCR6, which came out of fine-tuned structural elaborations from a proprietary HTS hit. Three main issues in the parent chemical series-cytotoxicity, phototoxicity, and hERG, were successfully solved. Biological characterization demonstrated that compound 45 (IDOR-1117-2520) is a selective and insurmountable antagonist of CCR6. In vivo proof-of-mechanism studies in a mouse lung inflammation model using a representative compound from the chemical class of 45 confirmed that the targeted CCR6+ cells were efficiently inhibited from migrating into the bronchoalveoli. Finally, ADMET and physicochemical properties were well balanced and the preclinical package warranted progress in the clinic.


Assuntos
Doenças Autoimunes , Receptores CCR6 , Receptores CCR6/antagonistas & inibidores , Receptores CCR6/metabolismo , Animais , Humanos , Doenças Autoimunes/tratamento farmacológico , Camundongos , Relação Estrutura-Atividade , Descoberta de Drogas
10.
Bioorg Med Chem Lett ; 23(3): 658-62, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23260352

RESUMO

A novel series of anti-malarials, based on a hydroxy-ethyl-amine scaffold, initially identified as peptidomimetic protease inhibitors is described. Combination of the hydroxy-ethyl-amine anti-malarial phramacophore with the known Mannich base pharmacophore of amodiaquine (57) resulted in promising in vivo active novel derivatives.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Etilaminas/química , Hidroxilamina/química , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/química , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Etilaminas/farmacologia , Hidroxilamina/farmacologia , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos , Estrutura Molecular
12.
Cancer Discov ; 12(6): 1500-1517, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404998

RESUMO

Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE: JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Inibidores Enzimáticos , Indazóis , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indazóis/química , Indazóis/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
13.
Chem Biol Interact ; 168(1): 51-65, 2007 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-17239835

RESUMO

The FDA has published guidelines by which to carry out and interpret in vitro induction studies using hepatocytes but do researchers in pharmaceutical companies actually follow these to the letter? In a survey of 30 participants in the pharmaceutical industry, 19 questions were posed regarding the species investigated, methodologies and interpretations of the data. Also addressed was the in-house decision making processes as a result of in vitro induction data. The survey showed that, although the basic methods were similar, no two researchers carried out and interpreted induction assays in exactly the same way. No single method was superior but all included enzyme activities as the major end point. Hepatocytes from animal species were used to confirm animal in vivo data but only human hepatocytes were used to predict human induction responses. If a compound was found to be positive in an in vitro induction assay, few would halt the development of the compound. The majority would consider other properties of the compound (bioavailability, clearance and therapeutic concentrations) and follow the FDA recommendation to conduct clinical drug-drug interaction studies. Overall, the results from this survey indicate that there is no standard pharmaceutical industry method or evaluation criterion by which in vitro assays are carried out. Rather than adhering to the FDA guidelines, some adapt methods and interpretation according to their own experience and need (whether screening or lead optimisation). There was general consensus that studies using human hepatocyte cultures currently provide the best indication of the in vivo induction potential of NCEs. In addition, the assessment of in vitro induction data from the literature suggest that the two-fold induction threshold and the percent of positive control criteria may not be the best methods to accurately assess the in vivo induction potential of a drug. Although the two-fold induction criterion is now obsolete, more predictive models for determining the clinical induction potential are needed. Alternative models are proposed and discussed herein.


Assuntos
Coleta de Dados , Interpretação Estatística de Dados , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Indução Enzimática , Enzimas/metabolismo , Fidelidade a Diretrizes , Diretrizes para o Planejamento em Saúde , Preparações Farmacêuticas/metabolismo , United States Food and Drug Administration , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/urina , Técnicas de Cultura de Células/métodos , Células Cultivadas , Diclofenaco/análogos & derivados , Diclofenaco/química , Diclofenaco/metabolismo , Diclofenaco/urina , Humanos , Estrutura Molecular , Preparações Farmacêuticas/administração & dosagem , Estados Unidos
14.
J Med Chem ; 60(23): 9769-9789, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29116786

RESUMO

We report here the discovery and pharmacological characterization of N-(1-benzyl-1H-pyrazol-3-yl)-2-phenylacetamide derivatives as potent, selective, brain-penetrating T-type calcium channel blockers. Optimization focused mainly on solubility, brain penetration, and the search for an aminopyrazole metabolite that would be negative in an Ames test. This resulted in the preparation and complete characterization of compound 66b (ACT-709478), which has been selected as a clinical candidate.


Assuntos
Benzenoacetamidas/química , Benzenoacetamidas/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Epilepsia Generalizada/tratamento farmacológico , Animais , Benzenoacetamidas/metabolismo , Benzenoacetamidas/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacocinética , Cães , Descoberta de Drogas , Epilepsia Generalizada/metabolismo , Cobaias , Humanos , Macaca fascicularis , Pirazóis/química , Pirazóis/farmacologia , Ratos Wistar , Relação Estrutura-Atividade
15.
Toxicol In Vitro ; 20(1): 125-31, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16098711

RESUMO

The scope of this study was to compare in vitro and in vivo cytochrome P450 (CYP) gene induction in mice, using liver slices as an in vitro model. We have chosen to study mice to be able to better interpret CYP induction during long-term safety studies in this species. Mouse liver slices were incubated with beta-naphthoflavone (betaNF), phenobarbital (PB) or dexamethasone (DEX) for 24 h. In addition, in an in vivo study, mice were treated with the same compounds for three days. The mRNA expression of cyp1a1, cyp1a2, cyp2b10 and cyp3a11, which are important for drug metabolism and inducible by xenobiotics, were investigated in vivo and in vitro by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Both in mouse liver slices and in vivo, betaNF was found to be a potent inducer of cyp1a1 and to a lesser extent of cyp1a2. All three compounds induced cyp2b10 mRNA levels, while the cyp3a11 mRNA level was induced only by DEX. Overall, these data demonstrated a good predictive in vitro-in vivo correlation of CYP induction.


Assuntos
Bioensaio , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Dexametasona/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos , Fenobarbital/farmacologia , RNA Mensageiro/metabolismo , Ativação Transcricional , beta-Naftoflavona/farmacologia
16.
Expert Opin Drug Metab Toxicol ; 2(6): 875-94, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17125407

RESUMO

Animal models are commonly used in the preclinical development of new drugs to predict the metabolic behaviour of new compounds in humans. It is, however, important to realise that humans differ from animals with regards to isoform composition, expression and catalytic activities of drug-metabolising enzymes. In this review the authors describe similarities and differences in this respect among the different species, including man. This may be helpful for drug researchers to choose the most relevant animal species in which the metabolism of a compound can be studied for extrapolating the results to humans. The authors focus on CYPs, which are the main enzymes involved in numerous oxidative reactions and often play a critical role in the metabolism and pharmacokinetics of xenobiotics. In addition, induction and inhibition of CYPs are compared among species. The authors conclude that CYP2E1 shows no large differences between species, and extrapolation between species appears to hold quite well. In contrast, the species-specific isoforms of CYP1A, -2C, -2D and -3A show appreciable interspecies differences in terms of catalytic activity and some caution should be applied when extrapolating metabolism data from animal models to humans.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Cães , Haplorrinos , Humanos , Inativação Metabólica , Isoenzimas/metabolismo , Camundongos , Preparações Farmacêuticas/administração & dosagem , Ratos , Especificidade da Espécie
17.
Pharmacogenomics ; 17(6): 615-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27045656

RESUMO

Genetic variants of drug metabolism enzymes and transporters can result in high pharmacokinetic and pharmacodynamic variability, unwanted characteristics of efficacious and safe drugs. Ideally, the contributions of these enzymes and transporters to drug disposition can be predicted from in vitro experiments and in silico modeling in discovery or early development, and then be utilized during clinical development. Recently, regulatory agencies have provided guidance on the preclinical investigation of pharmacogenetics, for application to clinical drug development. This white paper summarizes the results of an industry survey conducted by the Industry Pharmacogenomics Working Group on current practice and challenges with using in vitro systems and in silico models to understand pharmacogenetic causes of variability in drug disposition.


Assuntos
Variação Genética/genética , Inativação Metabólica/genética , Proteínas de Membrana Transportadoras/genética , Descoberta de Drogas/métodos , Humanos , Farmacogenética/métodos
18.
Clin Pharmacokinet ; 55(3): 369-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26385839

RESUMO

INTRODUCTION: Macitentan is a novel dual endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). It is metabolized by cytochrome P450 (CYP) enzymes, mainly CYP3A4, to its active metabolite ACT-132577. METHODS: A physiological-based pharmacokinetic (PBPK) model was developed by combining observations from clinical studies and physicochemical parameters as well as absorption, distribution, metabolism and excretion parameters determined in vitro. RESULTS: The model predicted the observed pharmacokinetics of macitentan and its active metabolite ACT-132577 after single and multiple dosing. It performed well in recovering the observed effect of the CYP3A4 inhibitors ketoconazole and cyclosporine, and the CYP3A4 inducer rifampicin, as well as in predicting interactions with S-warfarin and sildenafil. The model was robust enough to allow prospective predictions of macitentan-drug combinations not studied, including an alternative dosing regimen of ketoconazole and nine other CYP3A4-interacting drugs. Among these were the HIV drugs ritonavir and saquinavir, which were included because HIV infection is a known risk factor for the development of PAH. CONCLUSION: This example of the application of PBPK modeling to predict drug-drug interactions was used to support the labeling of macitentan (Opsumit).


Assuntos
Antagonistas do Receptor de Endotelina A/farmacocinética , Antagonistas do Receptor de Endotelina B/farmacocinética , Modelos Biológicos , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Adulto , Ciclosporina/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Humanos , Cetoconazol/farmacologia , Masculino , Pirimidinas/sangue , Rifampina/farmacologia , Citrato de Sildenafila/farmacologia , Sulfonamidas/sangue , Varfarina/farmacologia
19.
Eur J Med Chem ; 115: 326-41, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27027817

RESUMO

In a previous communication we reported on the discovery of aminopyridine 1 as a potent, selective and orally active S1P1 receptor agonist. More detailed studies revealed that this compound is phototoxic in vitro. As a result of efforts aiming at eliminating this undesired property, a series of alkoxy substituted pyridine derivatives was discovered. The photo irritancy factor (PIF) of these alkoxy pyridines was significantly lower than the one of aminopyridine 1 and most compounds were not phototoxic. Focused SAR studies showed, that 2-, 3-, and 4-pyridine derivatives delivered highly potent S1P1 receptor agonists. While the 2-pyridines were clearly more selective against S1PR3, the corresponding 3- or 4-pyridine analogues showed significantly longer oral half-lives and as a consequence longer pharmacological duration of action after oral administration. One of the best compounds, cyclopentoxy-pyridine 45b lacked phototoxicity, showed EC50 values of 0.7 and 140 nM on S1PR1 and S1PR3, respectively, and maximally reduced the blood lymphocyte count for at least 24 h after oral administration of 10 mg/kg to Wistar rats.


Assuntos
Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Animais , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Piridinas/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 116: 222-238, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27061986

RESUMO

In a previous communication we reported on the discovery of alkylamino pyridine derivatives (e.g. 1) as a new class of potent, selective and efficacious S1P1 receptor (S1PR1) agonists. However, more detailed profiling revealed that this compound class is phototoxic in vitro. Here we describe a new class of potent S1PR1 agonists wherein the exocyclic nitrogen was moved away from the pyridine ring (e.g. 11c). Further structural modifications led to the identification of novel alkylaminomethyl substituted phenyl and thienyl derivatives as potent S1PR1 agonists. These new alkylaminomethyl aryl compounds showed no phototoxic potential. Based on their in vivo efficacy and ability to penetrate the brain, the 5-alkyl-aminomethyl thiophenes appeared to be the most interesting class. Potent and selective S1PR1 agonist 20e, for instance, maximally reduced the blood lymphocyte count (LC) for 24 h after oral administration of 10 mg/kg to rat and its brain concentrations reached >500 ng/g over 24 h.


Assuntos
Desenho de Fármacos , Piridinas/química , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Animais , Encéfalo/metabolismo , Masculino , Piridinas/síntese química , Piridinas/farmacocinética , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA