Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Infect Dis ; 75(1): e10-e19, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35385575

RESUMO

BACKGROUND: Understanding the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission is important for adequate infection control measures in this ongoing pandemic. METHODS: Households were enrolled upon a polymerase chain reaction-confirmed index case between October and December 2020, prior to the coronavirus disease 2019 vaccination program. Saliva samples were obtained by self-sampling at days 1, 3, 5, 7, 10, 14, 21, 28, 35, and 42 from study inclusion. Nasopharyngeal swabs (NPS) and oropharyngeal swabs (OPS) were collected by the research team at day 7 and capillary blood samples at day 42. Household secondary attack rate (SAR) and per-person SAR were calculated based on at least 1 positive saliva, NPS, OPS, or serum sample. Whole genome sequencing was performed to investigate the possibility of multiple independent SARS-CoV-2 introductions within a household. RESULTS: Eighty-five households were included consisting of 326 (unvaccinated) individuals. Comparable numbers of secondary cases were identified by saliva (133/241 [55.2%]) and serum (127/213 [59.6%]). The household SAR was 88.2%. The per-person SAR was 64.3%. The majority of the secondary cases tested positive in saliva at day 1 (103/150 [68.7%]). Transmission from index case to household member was not affected by age or the nature of their relationship. Phylogenetic analyses suggested a single introduction for the investigated households. CONCLUSIONS: Households have a pivotal role in SARS-CoV-2 transmission. By repeated saliva self-sampling combined with NPS, OPS, and serology, we found the highest SARS-CoV-2 household transmission rates reported to date. Salivary (self-) sampling of adults and children is suitable and attractive for near real-time monitoring of SARS-CoV-2 transmission in this setting.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , Criança , Humanos , Pandemias , Filogenia , Saliva
3.
Curr Opin Pulm Med ; 22(6): 623-8, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27583669

RESUMO

PURPOSE OF REVIEW: Progression of lung disease in cystic fibrosis (CF) is punctuated by Pseudomonas aeruginosa infection and recurrent pulmonary exacerbations, and is the major determinant of a patient's life expectancy. With the advent of novel deep-sequencing techniques, polymicrobial bacterial assemblages rather than single pathogens seem to be responsible for the deterioration of pulmonary function. This review summarizes recent insights into the development of the CF respiratory tract microbiome, with its determinants and its relations to clinical parameters. RECENT FINDINGS: Research has moved from microbiota snapshots to intensive sampling over time, in an attempt to identify biomarkers of progression of CF lung disease. The developing respiratory tract microbiota in CF is perturbed by various endogenous and exogenous factors from the first months of life on. This work has revealed that both major pathogens such as P. aeruginosa and newly discovered players such as anaerobic species seem to contribute to CF lung disease. However, their interrelations remain to be unraveled. SUMMARY: Long-term follow-up of microbiome development and alterations in relation to progression of lung disease and treatment is recommended. Moreover, integrating this information with other systems such as the metabolome, genome, mycome and virome is likely to contribute significantly to insights into host-microbiome interactions and thereby CF lung disease pathogenesis.


Assuntos
Fibrose Cística/microbiologia , Pneumopatias/microbiologia , Microbiota , Infecções Respiratórias/microbiologia , Fibrose Cística/fisiopatologia , Humanos , Pulmão/fisiopatologia
4.
Curr Opin Pulm Med ; 22(6): 623-628, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27841789

RESUMO

PURPOSE OF REVIEW: Progression of lung disease in cystic fibrosis (CF) is punctuated by Pseudomonas aeruginosa infection and recurrent pulmonary exacerbations, and is the major determinant of a patient's life expectancy. With the advent of novel deep-sequencing techniques, polymicrobial bacterial assemblages rather than single pathogens seem to be responsible for the deterioration of pulmonary function. This review summarizes recent insights into the development of the CF respiratory tract microbiome, with its determinants and its relations to clinical parameters. RECENT FINDINGS: Research has moved from microbiota snapshots to intensive sampling over time, in an attempt to identify biomarkers of progression of CF lung disease. The developing respiratory tract microbiota in CF is perturbed by various endogenous and exogenous factors from the first months of life on. This work has revealed that both major pathogens such as P. aeruginosa and newly discovered players such as anaerobic species seem to contribute to CF lung disease. However, their interrelations remain to be unraveled. SUMMARY: Long-term follow-up of microbiome development and alterations in relation to progression of lung disease and treatment is recommended. Moreover, integrating this information with other systems such as the metabolome, genome, mycome and virome is likely to contribute significantly to insights into host-microbiome interactions and thereby CF lung disease pathogenesis.


Assuntos
Fibrose Cística/microbiologia , Pneumopatias/microbiologia , Microbiota , Infecções Respiratórias/microbiologia , Fibrose Cística/fisiopatologia , Humanos , Infecções por Pseudomonas
6.
Cell Host Microbe ; 31(3): 447-460.e6, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893737

RESUMO

Early-life microbiota seeding and subsequent development is crucial to future health. Cesarean-section (CS) birth, as opposed to vaginal delivery, affects early mother-to-infant transmission of microbes. Here, we assess mother-to-infant microbiota seeding and early-life microbiota development across six maternal and four infant niches over the first 30 days of life in 120 mother-infant pairs. Across all infants, we estimate that on average 58.5% of the infant microbiota composition can be attributed to any of the maternal source communities. All maternal source communities seed multiple infant niches. We identify shared and niche-specific host/environmental factors shaping the infant microbiota. In CS-born infants, we report reduced seeding of infant fecal microbiota by maternal fecal microbes, whereas colonization with breastmilk microbiota is increased when compared with vaginally born infants. Therefore, our data suggest auxiliary routes of mother-to-infant microbial seeding, which may compensate for one another, ensuring that essential microbes/microbial functions are transferred irrespective of disrupted transmission routes.


Assuntos
Microbiota , Mães , Feminino , Gravidez , Humanos , Lactente , Parto Obstétrico , Cesárea , Fezes
7.
Microbiol Spectr ; 11(3): e0405722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199622

RESUMO

16S-based sequencing provides broader information on the respiratory microbial community than conventional culturing. However, it (often) lacks species- and strain-level information. To overcome this issue, we used 16S rRNA-based sequencing results from 246 nasopharyngeal samples obtained from 20 infants with cystic fibrosis (CF) and 43 healthy infants, which were all 0 to 6 months old, and compared them to both standard (blind) diagnostic culturing and a 16S-sequencing-informed "targeted" reculturing approach. Using routine culturing, we almost uniquely detected Moraxella catarrhalis, Staphylococcus aureus, and Haemophilus influenzae (42%, 38%, and 33% of samples, respectively). Using the targeted reculturing approach, we were able to reculture 47% of the top-5 operational taxonomical units (OTUs) in the sequencing profiles. In total, we identified 60 species from 30 genera with a median of 3 species per sample (range, 1 to 8). We also identified up to 10 species per identified genus. The success of reculturing the top-5 genera present from the sequencing profile depended on the genus. In the case of Corynebacterium being in the top 5, we recultured them in 79% of samples, whereas for Staphylococcus, this value was only 25%. The success of reculturing was also correlated with the relative abundance of those genera in the corresponding sequencing profile. In conclusion, revisiting samples using 16S-based sequencing profiles to guide a targeted culturing approach led to the detection of more potential pathogens per sample than conventional culturing and may therefore be useful in the identification and, consequently, treatment of bacteria considered relevant for the deterioration or exacerbation of disease in patients like those with CF. IMPORTANCE Early and effective treatment of pulmonary infections in cystic fibrosis is vital to prevent chronic lung damage. Although microbial diagnostics and treatment decisions are still based on conventional culture methods, research is gradually focusing more on microbiome and metagenomic-based approaches. This study compared the results of both methods and proposed a way to combine the best of both worlds. Many species can relatively easily be recultured based on the 16S-based sequencing profile, and it provides more in-depth information about the microbial composition of a sample than that obtained through routine (blind) diagnostic culturing. Still, well-known pathogens can be missed by both routine diagnostic culture methods as well as by targeted reculture methods, sometimes even when they are highly abundant, which may be a consequence of either sample storage conditions or antibiotic treatment at the time of sampling.


Assuntos
Fibrose Cística , Microbiota , Lactente , Humanos , Criança , Recém-Nascido , Fibrose Cística/diagnóstico , Fibrose Cística/microbiologia , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Bactérias/genética , Microbiota/genética
8.
Vaccine ; 40(3): 408-413, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34961634

RESUMO

Pneumococcal conjugate vaccines reduce pneumococcal colonization via serotype-specific immunoglobulin G (IgG) at mucosal surfaces. The infant immunization schedule with the ten-valent pneumococcal conjugate vaccine (PCV10) changed from a 3 + 1 schedule (2-3-4-11 months) to a 2 + 1 schedule (2-4-11 months) in The Netherlands in 2013. We compared anti-pneumococcal IgG concentrations in saliva between the schedules. IgG was measured using a fluorescent bead-based multiplex immunoassay at the ages of 6 (post-primary) and 12 (post-booster) months in 51 infants receiving the 3 + 1 schedule and 68 infants receiving the 2 + 1 schedule. Post-primary IgG geometric mean concentrations (GMCs) were comparable between schedules for all vaccine serotypes. Post-booster IgG GMCs were significantly lower after the 2 + 1 schedule for serotypes 4 (p = 0.035), 7F (p = 0.048) and 23F (p = 0.0056). This study shows small differences in mucosal IgG responses between a 3 + 1 and a 2 + 1 PCV10 schedule. Future studies should establish correlates of protection against pneumococcal colonization for mucosal antibodies.


Assuntos
Formação de Anticorpos , Infecções Pneumocócicas , Anticorpos Antibacterianos , Coorte de Nascimento , Humanos , Esquemas de Imunização , Lactente , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Vacinação , Vacinas Conjugadas
9.
Nat Commun ; 13(1): 6638, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380002

RESUMO

The gut microbiota in early life, when critical immune maturation takes place, may influence the immunogenicity of childhood vaccinations. Here we assess the association between mode of delivery, gut microbiota development in the first year of life, and mucosal antigen-specific antibody responses against pneumococcal vaccination in 101 infants at age 12 months and against meningococcal vaccination in 66 infants at age 18 months. Birth by vaginal delivery is associated with higher antibody responses against both vaccines. Relative abundances of vaginal birth-associated Bifidobacterium and Escherichia coli in the first weeks of life are positively associated with anti-pneumococcal antibody responses, and relative abundance of E. coli in the same period is also positively associated with anti-meningococcal antibody responses. In this study, we show that mode of delivery-induced microbiota profiles of the gut are associated with subsequent antibody responses to routine childhood vaccines.


Assuntos
Microbioma Gastrointestinal , Vacinas Meningocócicas , Lactente , Gravidez , Feminino , Humanos , Escherichia coli , Bifidobacterium , Vacinação , Anticorpos Antibacterianos
10.
Nat Microbiol ; 7(2): 224-237, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058634

RESUMO

The respiratory tract is populated by a specialized microbial ecosystem, which is seeded during and directly following birth. Perturbed development of the respiratory microbial community in early-life has been associated with higher susceptibility to respiratory tract infections (RTIs). Given a consistent gap in time between first signs of aberrant microbial maturation and the observation of the first RTIs, we hypothesized that early-life host-microbe cross-talk plays a role in this process. We therefore investigated viral presence, gene expression profiles and nasopharyngeal microbiota from birth until 12 months of age in 114 healthy infants. We show that the strongest dynamics in gene expression profiles occurred within the first days of life, mostly involving Toll-like receptor (TLR) and inflammasome signalling. These gene expression dynamics coincided with rapid microbial niche differentiation. Early asymptomatic viral infection co-occurred with stronger interferon activity, which was related to specific microbiota dynamics following, including early enrichment of Moraxella and Haemophilus spp. These microbial trajectories were in turn related to a higher number of subsequent (viral) RTIs over the first year of life. Using a multi-omic approach, we found evidence for species-specific host-microbe interactions related to consecutive susceptibility to RTIs. Although further work will be needed to confirm causality of our findings, together these data indicate that early-life viral encounters could impact subsequent host-microbe cross-talk, which is linked to later-life infections.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota/genética , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Viroses/imunologia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Haemophilus/imunologia , Humanos , Lactente , Recém-Nascido , Inflamassomos , Masculino , Microbiota/imunologia , Moraxella/imunologia , Nasofaringe/virologia , Recidiva , Infecções Respiratórias/fisiopatologia , Especificidade da Espécie
11.
Pediatr Infect Dis J ; 40(1): e36-e39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044434

RESUMO

The clinical presentation of human coronavirus (HCoV) infections in children varies strongly. We show that children with an HCoV-associated lower respiratory tract infection more frequently had respiratory syncytial virus codetected and higher abundance of Haemophilus influenzae/haemolyticus than asymptomatic HCoV carriers as well as children with a non-HCoV-associated lower respiratory tract infection. Viral and bacterial cooccurrence may drive symptomatology of HCoV-associated infections including coronavirus disease 2019.


Assuntos
Coinfecção/microbiologia , Coinfecção/virologia , Infecções por Coronavirus/patologia , Infecções Respiratórias/patologia , Bactérias/classificação , Bactérias/isolamento & purificação , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/patologia , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/microbiologia , Infecções por Coronavirus/virologia , Feminino , Haemophilus/classificação , Haemophilus/isolamento & purificação , Humanos , Lactente , Masculino , Países Baixos/epidemiologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estações do Ano , Índice de Gravidade de Doença
12.
Pediatr Infect Dis J ; 40(9): e351-e353, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260500

RESUMO

We compared pathogen detection between saliva, nasopharyngeal and oropharyngeal swabs in children with respiratory symptoms. The sensitivity in nasopharyngeal swabs was 93% (95% confidence interval [CI]: 78%-98%), in oropharyngeal swabs 79% (95% CI: 60%-90%), in saliva overall 76% (95% CI: 58%-88%) and in 18 saliva samples collected with drooling or sponges, 94% (95% CI: 74%-99%). Saliva could be a relevant specimen alternative.


Assuntos
Técnicas de Laboratório Clínico/normas , Infecções Respiratórias/diagnóstico , Saliva/microbiologia , Saliva/virologia , Vírus/genética , Adolescente , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Criança , Pré-Escolar , Técnicas de Laboratório Clínico/métodos , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidade , Nasofaringe/microbiologia , Nasofaringe/virologia , Orofaringe/microbiologia , Orofaringe/virologia , Estudos Prospectivos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Sensibilidade e Especificidade , Manejo de Espécimes , Vírus/classificação , Vírus/patogenicidade
13.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34195257

RESUMO

Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be related to recurrent or chronic respiratory problems. Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of respiratory symptoms as well as recovery of the microbial community following hospital admission for LRTI in children. To this end, we collected clinical data and characterised the nasopharyngeal microbiota of 154 children (4 weeks-5 years old) hospitalised for a LRTI (bronchiolitis, pneumonia, wheezing illness or mixed infection) at admission and 4-8 weeks later. Data were compared to 307 age-, sex- and time-matched healthy controls. During follow-up, 66% of cases experienced recurrence of (mild) respiratory symptoms. In cases with recurrence of symptoms during follow-up, we found distinct nasopharyngeal microbiota at hospital admission, with higher levels of Haemophilus influenzae/haemolyticus, Prevotella oris and other gram-negatives and lower levels of Corynebacterium pseudodiphtheriticum/propinquum and Dolosigranulum pigrum compared with healthy controls. Furthermore, in cases with recurrence of respiratory symptoms, recovery of the microbiota was also diminished. Especially in cases with wheezing illness, we observed a high rate of recurrence of respiratory symptoms, as well as diminished microbiota recovery at follow-up. Together, our results suggest a link between the nasopharyngeal microbiota composition during LRTI and early recurrence of respiratory symptoms, as well as diminished microbiota recovery after 4-8 weeks. Future studies should investigate whether (speed of) ecological recovery following childhood LRTI is associated with long-term respiratory problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA