Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Cell ; 36(6): 2219-2237, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38518124

RESUMO

Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing. We found that LSM4 regulates alternative splicing (AS) of a suite of its in vivo targets identified here. The lsm4 and prmt5 mutants show a considerable overlap of genes with altered AS raising the possibility that splicing of those genes could be regulated by PRMT5-dependent LSM4 methylation. Indeed, LSM4 methylation impacts AS, particularly of genes linked with stress response. Wild-type LSM4 and an unmethylable version complement the lsm4-1 mutant, suggesting that methylation is not critical for growth in normal environments. However, LSM4 methylation increases with abscisic acid and is necessary for plants to grow under abiotic stress. Conversely, bacterial infection reduces LSM4 methylation, and plants that express unmethylable-LSM4 are more resistant to Pseudomonas than those expressing wild-type LSM4. This tolerance correlates with decreased intron retention of immune-response genes upon infection. Taken together, this provides direct evidence that R-methylation adjusts LSM4 function on pre-mRNA splicing in an antagonistic manner in response to biotic and abiotic stress.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis , Arabidopsis , Arginina , Regulação da Expressão Gênica de Plantas , Proteína-Arginina N-Metiltransferases , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento Alternativo/genética , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Estresse Fisiológico/genética , Arginina/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Mutação/genética
2.
J Exp Bot ; 75(10): 2809-2818, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373194

RESUMO

The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Temperatura
3.
Plants (Basel) ; 13(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39409642

RESUMO

PROTEIN ARGININE METHYLTRANSFERASES (PRMTs) catalyze arginine (R) methylation that is critical for transcriptional and post-transcriptional gene regulation. In Arabidopsis, PRMT5 that catalyzes symmetric R dimethylation is best characterized. PRMT5 mutants are late-flowering and show altered responses to environmental stress. Among PRMT5 targets are Arabidopsis thaliana GLYCINE RICH RNA BINDING PROTEIN 7 (AtGRP7) and AtGRP8 that promote the transition to flowering. AtGRP7 R141 has been shown to be modified by PRMT5. Here, we tested whether this symmetric dimethylation of R141 is important for AtGRP7's physiological role in flowering time control. We constructed AtGRP7 mutant variants with non-methylable R141 (R141A, R141K). Genomic clones containing these variants complemented the late-flowering phenotype of the grp7-1 mutant to the same extent as wild-type AtGRP7. Furthermore, overexpression of AtGRP7 R141A or R141K promoted flowering similar to overexpression of the wild-type protein. Thus, flowering time does not depend on R141 and its modification. However, germination experiments showed that R141 contributes to the activity of AtGRP7 in response to abiotic stress reactions mediated by abscisic acid during early development. Immunoprecipitation of AtGRP7-GFP in the prmt5 background revealed that antibodies against dimethylated arginine still recognized AtGRP7, suggesting that additional methyltransferases may be responsible for modification of AtGRP7.

4.
mBio ; 13(1): e0344221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073758

RESUMO

Recent studies have shown a temporal increase in the neutralizing antibody potency and breadth to SARS-CoV-2 variants in coronavirus disease 2019 (COVID-19) convalescent individuals. Here, we examined longitudinal antibody responses and viral neutralizing capacity to the B.1 lineage virus (Wuhan related), to variants of concern (VOC; Alpha, Beta, Gamma, and Delta), and to a local variant of interest (VOI; Lambda) in volunteers receiving the Sputnik V vaccine in Argentina. Longitudinal serum samples (N = 536) collected from 118 volunteers obtained between January and October 2021 were used. The analysis indicates that while anti-spike IgG levels significantly wane over time, the neutralizing capacity for the Wuhan-related lineages of SARS-CoV-2 and VOC is maintained within 6 months of vaccination. In addition, an improved antibody cross-neutralizing ability for circulating variants of concern (Beta and Gamma) was observed over time postvaccination. The viral variants that displayed higher escape to neutralizing antibodies with respect to the original virus (Beta and Gamma variants) were the ones showing the largest increase in susceptibility to neutralization over time after vaccination. Our observations indicate that serum neutralizing antibodies are maintained for at least 6 months and show a reduction of VOC escape to neutralizing antibodies over time after vaccination. IMPORTANCE Vaccines have been produced in record time for SARS-CoV-2, offering the possibility of halting the global pandemic. However, inequalities in vaccine accessibility in different regions of the world create a need to increase international cooperation. Sputnik V is a recombinant adenovirus-based vaccine that has been widely used in Argentina and other developing countries, but limited information is available about its elicited immune responses. Here, we examined longitudinal antibody levels and viral neutralizing capacity elicited by Sputnik V vaccination. Using a cohort of 118 volunteers, we found that while anti-spike antibodies wane over time, the neutralizing capacity to viral variants of concern and local variants of interest is maintained within 4 months of vaccination. In addition, we observed an increased cross-neutralization activity over time for the Beta and Gamma variants. This study provides valuable information about the immune response generated by a vaccine platform used in many parts of the world.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Estudos Longitudinais , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico
5.
Cell Rep Med ; 2(8): 100359, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34308389

RESUMO

Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, the limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of the vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus-neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying administration of the second dose to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Argentina/epidemiologia , COVID-19/imunologia , Chlorocebus aethiops , Células HEK293 , Pessoal de Saúde , Humanos , Pandemias , SARS-CoV-2/patogenicidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas , Células Vero
6.
Transcription ; 11(3-4): 100-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936724

RESUMO

Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.


Assuntos
Relógios Circadianos/genética , Interações Hospedeiro-Patógeno/genética , Plantas/genética , Transcrição Gênica/genética , Plantas/metabolismo , Plantas/microbiologia
7.
Curr Biol ; 30(9): 1740-1747.e6, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220315

RESUMO

The circadian clock modulates immune responses in plants and animals; however, it is unclear how host-pathogen interactions affect the clock. Here we analyzed clock function in Arabidopsis thaliana mutants with defective immune responses and found that enhanced disease susceptibility 4 (eds4) displays alterations in several circadian rhythms. Mapping by sequencing revealed that EDS4 encodes the ortholog of NUCLEOPORIN 205, a core component of the inner ring of the nuclear pore complex (NPC). Consistent with the idea that the NPC specifically modulates clock function, we found a strong enrichment in core clock genes, as well as an increased nuclear to total mRNA accumulation, among genes that were differentially expressed in eds4 mutants. Interestingly, infection with Pseudomonas syringae in wild-type (WT) plants downregulated the expression of several morning core clock genes as early as 1 h post-infection, including all members of the NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) gene family, and this effect was attenuated in eds4. Furthermore, lnk mutants were more susceptible than the WT to P. syringae infection. These results indicate that bacterial infection, acting in part through the NPC, alters core clock gene expression and/or mRNA accumulation in a way that favors bacterial growth and disease susceptibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Animais , Proteínas de Arabidopsis/genética , Proteínas CLOCK/genética , Mutação , Doenças das Plantas/imunologia
8.
Front Plant Sci ; 10: 1019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456814

RESUMO

Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.

9.
Genes (Basel) ; 9(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544736

RESUMO

The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.

10.
Genes (Basel) ; 10(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577529

RESUMO

Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT⁻INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.

11.
Curr Opin Plant Biol ; 35: 84-90, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27912128

RESUMO

Circadian clocks are molecular devices that help adjust organisms to periodic environmental changes. Although formally described as self-sustaining oscillators that are synchronized by external cues and produce defined outputs, it is increasingly clear that physiological processes not only are regulated by, but also regulate the function of the clock. We discuss three recent examples of the intimate relationships between the function of the clock, growth and metabolism in photosynthetic organisms: the daily tracking of sun by sunflowers, the fine computations plants and cyanobacteria perform to manage carbon reserves and prevent starvation, and the changes in clock parameters that went along with domestication of tomato.


Assuntos
Carbono/metabolismo , Relógios Circadianos/fisiologia , Cianobactérias/fisiologia , Domesticação , Fenômenos Fisiológicos Vegetais , Luz Solar , Helianthus/fisiologia , Solanum lycopersicum/fisiologia , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA