Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurosurg Focus ; 56(4): E7, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38560942

RESUMO

OBJECTIVE: The superior eyelid endoscopic transorbital approach (SETOA) provides a direct and short minimally invasive route to the anterior and middle skull base. Nevertheless, it uses a narrow corridor that limits its angles of attack. The aim of this study was to evaluate the feasibility and potential benefits of an "extended" conservative variant of the "standard" endoscopic transorbital approach-termed "open-door"-to enhance the exposure of lesions affecting the paramedian aspect of the anterior and middle cranial fossae. METHODS: First, the authors described the technical nuances of the open-door extended transorbital approach (ODETA). Next, they documented its morphometric advantages over standard SETOA. Finally, they provided a clinical-anatomical application to demonstrate enhanced exposure and better angles of attack to treat lesions occupying the paramedian anterior and middle cranial fossae. Five adult cadaveric specimens (10 sides) initially underwent standard SETOA and then extended open-door SETOA (ODETA to the paramedian anterior and middle fossae). The adjunct of hinge-orbitotomy, through three surgical steps and straddling the frontozygomatic suture, converted conventional SETOA to its extended open-door variant. CT scans were performed before dissection and uploaded to the neuronavigation system for quantitative analysis. The angles of attack on the axial plane that addressed four key landmarks, namely the tip of the anterior clinoid process (ACP), foramen rotundum (FR), foramen ovale (FO), and trigeminal impression (TI), were calculated for both operative techniques and compared. RESULTS: Hinge-orbitotomy of the extended open-door SETOA resulted in several surgical, functional, and esthetic advantages: it provided wider axial angles of attack for each of the target points, with a gain angle of 26.68° ± 1.31° for addressing the ACP (p < 0.001), 29.50° ± 2.46° for addressing the FR (p < 0.001), 19.86° ± 1.98° for addressing the FO (p < 0.001), and 17.44° ± 2.21° for addressing the lateral aspect of the TI (p < 0.001), while hiding the skin scar, avoiding temporalis muscle dissection, preserving flap vascularization, and decreasing the rate of bone infection and degree of orbital content retraction. CONCLUSIONS: The extended open-door technique may be specifically suited for selected patients affected by paramedian anterior and middle fossae lesions, with prevalent anteromedial extension toward the anterior clinoid, the foremost compartment of the cavernous sinus and FR and not completely controlled with the pure endoscopic transorbital approach.


Assuntos
Neuroendoscopia , Adulto , Humanos , Neuroendoscopia/métodos , Cadáver , Fossa Craniana Média/diagnóstico por imagem , Fossa Craniana Média/cirurgia , Base do Crânio/cirurgia , Procedimentos Neurocirúrgicos/métodos
2.
World Neurosurg ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151698

RESUMO

BACKGROUND: Endoscopic transorbital approach emerged in recent years as an effective, minimally invasive route to access Meckel's cave area. Several case series proved its effectiveness in the surgical treatment of trigeminal schwannomas. Nonetheless, this route provides the advantages of a minimally invasive approach associated with low morbidity rates. In this anatomo-clinical study we illustrate the usefulness of the superior eyelid transorbital approach for the surgical treatment of trigeminal schwannoma guiding the clinical applicability of the anatomical findings into the real surgical practice. METHODS: Superior eyelid transorbital endoscopic approach was performed on eight cadaveric specimens, and the surgical results were confirmed in a retrospective review of all the surgical cases of transorbital surgery performed by the senior authors providing an illustrative case. Finally, we performed a literature review of all the case series of trigeminal schwannomas operated through an endoscopic transorbital approach. RESULTS: Stepwise dissection was divided in 3 phases: skin, endo-orbital and endocranial. The illustrative case provided demonstrate gross total resection of a cavernous sinus type trigeminal schwannomas treated through this route. Literature review revealed 68 cases of trigeminal schwannomas that were successfully treated using the transorbital approach. CONCLUSIONS: The endoscopic transorbital approach may offer a valuable alternative for the surgical treatment of trigeminal schwannomas. This technique provides a minimally invasive, direct and natural "interdural" route to the lateral wall of the cavernous sinus and Meckel's cave.

3.
Brain Spine ; 4: 102719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38163002

RESUMO

Introduction: The transorbital route has been proposed for addressing orbital and paramedian skull base lesions. It can be complemented by further marginotomies, as per "extended-transorbital approach" and combined with others ventro-basal approaches featuring the concept of "multiportal surgery". Nevertheless, it cannot address some anatomical regions like the clinoid, carotid bifurcation and the Sylvian fissure. Therefore, we propose a combined transorbital and a supraorbital approach, attainable by a single infra-brow incision, and we called it "Uniportal multicorridor" approach. Research question: The aim of our study is to verify its feasibility and deep anatomical targets through a cadaveric study. Materials and methods: Anatomic dissections were performed at the Laboratory of ICLO Teaching and Research Center (Verona, Italy) on four formalin-fixed cadaveric heads injected with colored neoprene latex (8 sides). A stepwise dissection of the supraorbital and transorbital approaches (with an infra-brow skin incision) to the anterior tentorial incisura, clinoid area, lateral wall of the cavernous sinus, middle temporal fossa, posterior fossa, and Sylvian fissure is described. Results: We analyzed the anatomic areas reached by the transorbital corridor dividing them as follow: lateral wall of the cavernous sinus, middle temporal fossa, posterior fossa, and Sylvian fissure; while the anatomic areas addressed by the supraorbital craniotomy were the clinoid area and the anterior tentorial incisura. Conclusions: The described uniportal multi-corridor approach combines a transorbital corridor and a supraorbital craniotomy, providing a unique intra and extradural control over the anterior, middle, and posterior fossa, tentorial incisura and the Sylvian fissure, via an infra-brow skin incision.

4.
World Neurosurg ; 186: e156-e160, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38548050

RESUMO

OBJECTIVES: Several factors contribute to the anatomical complexity of the trochlear nerve, including small diameter, complex and longest intracranial course, deep location, and numerous neurovascular relationships. A 3-dimensional (3D) photorealistic model of the cranial nerves provides a detailed and immersive representation of the anatomy, enabling one to improve surgical planning, advanced surgical research, and training. The purpose of this work is to present a 3D photogrammetric study for a more intuitive and interactive way to explore and describe the entire course of trochlear nerve. METHODS: Two injected-fixed head human specimens (4 sides) were examined. The dissection protocol was divided into the following steps: 1) brain hemisphere exposure; 2) hemispherectomy dissecting all cranial nerves and partial removal of the free edge of the tentorium; 3) middle fossa and lateral wall of cavernous sinus exposure; and 4) orbital exposure. A detailed 3D photogrammetric model was generated for each dissection step. RESULTS: Four main volumetric models were generated during a step-by-step layered dissection of the entire nerve pathway highlighting its different segments. Finally, a full and integrated model of the entire course of the nerve was created. The models are available for visualization on monoscopic display, virtual, and augmented reality environment. CONCLUSIONS: The present photogrammetric model provides a more comprehensive understanding of the nerve's anatomy in its different segments, allows for customizable views thus simulating different perspectives, and can be a valuable alternative to traditional dissections. It is an advanced tool for surgical planning and surgical simulation as well as virtual reality representation of the anatomy.


Assuntos
Imageamento Tridimensional , Modelos Anatômicos , Fotogrametria , Nervo Troclear , Humanos , Nervo Troclear/anatomia & histologia , Nervo Troclear/cirurgia , Imageamento Tridimensional/métodos , Fotogrametria/métodos , Dissecação/métodos , Cadáver
5.
Artigo em Inglês | MEDLINE | ID: mdl-38995028

RESUMO

BACKGROUND AND OBJECTIVES: McCarty keyhole (MCK) is the most important entry point during orbitocranial and cranio-orbital approaches; nevertheless, its anatomic coordinates have never been detailedly described from transorbital perspective. To provide the spatial coordinates for intraorbital projection of the "mirror" MCK by using the well-established main anatomic-surgical bony landmarks met along transorbital corridor. METHODS: MCK was identified in 15 adult dry skulls (30 sides) on exocranial surface of pterional region based on the well-defined external bony landmarks: on the frontosphenoid suture, 5 to 6 mm behind the joining point (JP) of frontozygomatic suture (FZS), frontosphenoid suture (FSS), and sphenozygomatic suture (SZS). A 1-mm burr hole was performed and progressively enlarged to identify the intracranial and intraorbital compartments. Exit site of the intraorbital part of burr hole was referenced to the FZS on the orbital rim, the superior orbital fissure, and the inferior orbital fissure and to the JP of FZS, FSS, and SZS. To electronically validate the results, 3-dimensional photorealistic and interactive models were reconstructed with photogrammetry. Finally, for a further validation, McCarty mirror keyhole was also exposed, based on results achieved, through endoscopic transorbital approach in 10 head specimens (20 sides). RESULTS: Intraorbital projection of MCK was identified on the FSS on intraorbital surface, 1.5 ± 0.5 mm posterior to JP, 11.5 ± 1.1 mm posterior to the FZS on orbital rim following the suture, 13.0 ± 1.2 mm from most anterior end of superior orbital fissure, 15.5 ± 1.4 mm from the most anterior end of the inferior orbital fissure in vertical line, on measurements under direct macroscopic visualization (mean ± SD). These values were electronically confirmed on the photogrammetric models with mean difference within 1 mm. CONCLUSION: To be aware of exact position of intraorbital projection of MCK during an early stage of transorbital approaches provides several surgical, clinical, and aesthetic advantages.

6.
J Clin Med ; 13(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731242

RESUMO

The endoscopic contralateral transmaxillary (CTM) approach has been proposed as a potential route to widen the corridor posterolateral to the internal carotid artery (ICA). In this study, we first refined the surgical technique of a combined multiportal endoscopic endonasal transclival (EETC) and CTM approach to the petrous apex (PA) and petroclival synchondrosis (PCS) in the dissection laboratory, and then validated its applications in a preliminary surgical series. The combined EETC and CTM approach was performed on three cadaver specimens based on four surgical steps: (1) the nasal, (2) the clival, (3) the maxillary and (4) the petrosal phases. The CTM provided a "head-on trajectory" to the PA and PCS and a short distance to the surgical field considerably furthering surgical maneuverability. The best operative set-up was achieved by introducing angled optics via the endonasal route and operative instruments via the transmaxillary corridor exploiting the advantages of a non-coaxial multiportal surgery. Clinical applications of the combined EETC and CTM approach were reported in three cases, a clival chordoma and two giant pituitary adenomas. The present translational study explores the safety and feasibility of a combined multiportal EETC and CTM approach to access the petroclival region though different corridors.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38967457

RESUMO

An endoscopic transorbital approach has been recently included in the neurosurgical armamentarium.1 We present a case of a 31-year-old female patient with a history of recent-onset refractory epilepsy related to a left temporal pole cavernoma operated through a superior eyelid endoscopic transorbital approach. The operative video shows the key surgical steps to ensure optimal surgical freedom, adequate exposure, and complete tumor resection.2 The postoperative course was uneventful, and the patient obtained seizure control and good cosmetic results without postoperative complications. The brain computed tomography and MRI showed the size of bone removal and confirmed the complete removal of the lesion, respectively. At 3-month follow-up, the patient is epileptic seizures-free without medications. An endoscopic transorbital approach provides adequate exposure of the temporal pole, allowing safe tumor resection. Complication avoidance encompasses careful dissection of palpebral muscles, dynamic orbital retraction, and neuronavigation guidance; sphenoidal drilling according to key anatomic landmarks (eg, sagittal crest3); and anatomic knowledge of the cavernous sinus and internal carotid artery and its tributaries course from a transorbital perspective4 and reconstruction filling the empty spaces using fat, fascia lata, or dural substitutes. All procedures performed were approved by the ethics committee of both centers and in accordance with Declaration of Helsinki and its later amendments. The patient consented to the procedure and to the publication of her images, and appropriate consent was obtained for publication of cadaveric images.

8.
World Neurosurg ; 185: e367-e375, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38342178

RESUMO

BACKGROUND: Virtual reality-based learning of neuroanatomy is a new feasible method to explore, visualize, and dissect interactively complex anatomic regions. We provide a new interactive photorealistic three-dimensional (3D) model of sellar region microsurgical anatomy that allows side-by-side views of exocranial and endocranial surfaces to be explored, with the aim of assisting young neurosurgery residents in learning microsurgical anatomy of this complex region. METHODS: Four head specimens underwent an endoscopic endonasal approach extended to the anterior and posterior skull base to expose the main bony anatomic landmarks of the sellar region. The same bony structures were exposed from a transcranial perspective. By using a photogrammetry method, multiple photographs from both endocranial and exocranial perspectives, different for angulations and depth, were captured, fused, and processed through dedicated software. RESULTS: All relevant bony structures were clearly distinguishable in the 3D model reconstruction, which provides several benefits in neuroanatomy learning: first, it replicates bony structures with high degrees of realism, accuracy, and fidelity; in addition, it provides realistic spatial perception of the depth of the visualized structures and their anatomic relationships; again, the 3D model is interactive and allows a 360° self-guided tour of the reconstructed object, so that the learner can read the bones and their anatomic relationship from all desired points of view. CONCLUSIONS: Detailed knowledge of key surgical landmarks representing keyholes and/or anatomic structures to not violate is mandatory for safer surgery, especially for a complex region such as the skull base. Highly accurate virtual and functional neurosurgical models, such as photogrammetry, can generate a realistic appearance to further improve surgical simulators and learn neuroanatomy.


Assuntos
Imageamento Tridimensional , Neurocirurgia , Humanos , Imageamento Tridimensional/métodos , Neurocirurgia/educação , Pontos de Referência Anatômicos , Sela Túrcica/anatomia & histologia , Sela Túrcica/cirurgia , Modelos Anatômicos , Realidade Virtual , Base do Crânio/cirurgia , Base do Crânio/anatomia & histologia , Procedimentos Neurocirúrgicos/educação , Procedimentos Neurocirúrgicos/métodos , Microcirurgia/educação , Microcirurgia/métodos
9.
J Clin Med ; 12(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38137585

RESUMO

BACKGROUND: Primary anaplastic-lymphoma-kinase (ALK)-positive large-cell lymphoma of the central nervous system (PCNS ALK-positive ALCL) is a rare entity, with a limited consensus reached regarding its management. While this pathology often presents as solitary lesions, the occurrence of multiple tumors within the brain is not uncommon. The lack of distinctive radiological features poses a diagnostic challenge, leading to delays in initiating targeted therapy. METHODS: We conducted a comprehensive literature search, identifying seventeen publications for qualitative analysis. RESULTS: The management options and reported patient outcomes in the literature varied significantly, emphasizing the need for a patient-specific approach. The emergence of ALK-specific inhibitors represents a new frontier in this field, demonstrating promising results. CONCLUSION: PCNS ALK-positive ALCL necessitates a comprehensive understanding and optimized management strategies. A tailored therapeutic approach, integrating surgical intervention with radiotherapy and chemotherapy, appears pivotal in addressing this pathology. The implementation of a therapeutic protocol is anticipated for further advancement in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA