RESUMO
The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Our findings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.
Assuntos
Colículos Inferiores , Núcleo Tegmental Pedunculopontino , Ratos , Animais , Masculino , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Receptores de GABA-A , Receptor 5-HT2A de Serotonina , Bicuculina/farmacologia , Serotonina/farmacologia , Ratos WistarRESUMO
In the present study, we evaluate the effect of acute restraint stress (15 min) of male Wistar rats on social interaction measurements and c-Fos immunoreactivity (c-Fos-ir) expression, a marker of neuronal activity, in areas involved with the modulation of acute physical restraint in rats, i.e., the paraventricular nucleus of the hypothalamus (PVN), median raphe nucleus (MnR), medial prefrontal cortex (mPFC), cingulate prefrontal cortex (cPFC), nucleus accumbens (NaC), hippocampus (CA3), lateral septum (LS) and medial amygdala (MeA). We considered the hypothesis that restraint stress exposure could promote social withdrawal induced by the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, and increase c-Fos expression in these limbic forebrain areas investigated. In addition, we investigated whether pretreatment with the atypical antipsychotic clozapine (5 mg/kg; I.P.) could attenuate or block the effects of restraint on these responses. We found that restraint stress induced social withdrawal, and increased c-Fos-ir in these areas, demonstrating that a single 15 min session of physical restraint of rats effectively activated the HPA axis, representing an effective tool for the investigation of neuronal activity in brain regions sensitive to stress. Conversely, pretreatment with clozapine, prevented social withdrawal and reduced c-Fos expression. We suggest that treatment with clozapine exerted a preventive effect in the social interaction deficit, at least in part, by blocking the effect of restraint stress in brain regions that are known to regulate the HPA-axis, including the cerebral cortex, hippocampus, hypothalamus, septum and amygdala. Further experiments will be done to confirm this hypothesis.
Assuntos
Restrição FísicaRESUMO
Manganese (Mn) is one of the most common chemical elements on Earth and an essential micronutrient in animal organism. However, in supraphysiological levels and long-term exposures, it is a potential toxicant. Although nervous system is the most studied in relation to Mn toxicity, other tissues can have their function impaired by Mn in high doses. The present study investigated the possible adverse effects of subchronic exposure to supraphysiologic level of Mn (5â¯mg/kg or 15â¯mg/kg, intraperitoneally) on reproductive, neurobehavioral, renal and hepatic parameters of male rats. For the first time, the vulnerability of these parameters to Mn was concomitantly investigated. While our results demonstrate that Mn treatments were not sufficient to produce a marked effect of neurotoxic, hepatotoxic or renal toxicity in adult rats, we found typical indicators of reproductive toxicity such as histopathological changes (major in testes and epididymis) and impaired sperm concentration and quality. Mn, under these experimental conditions, seems to exert reproductive toxicity by different testicular mechanisms, i.e. direct and indirect action on germ cells. On the other hand, exposure to Mn did not change the pattern of cognitive and emotional behaviors and the histological organization of kidneys of experimental rats. The liver showed a weight increasement and hidropic degeneration, probable due to the detoxification overload. In summary, for the first time it was demonstrated that adult male reproductive system was more sensitive to Mn toxicity than nervous, hepatic and renal systems, although nervous system is known as the main target tissue of this metal.
Assuntos
Manganês/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/patologia , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos Wistar , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Testes de Toxicidade SubcrônicaRESUMO
Dysfunctions of the serotonergic system have been suggested to be important in the neurobiology of schizophrenia. Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-hydroxytryptamine(HT)2 receptor agonist disrupted PPI in rats. The inferior colliculus (IC) is a critical nucleus of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. The present study investigated the role of serotonergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether 5-HT2A receptor activation or blockade would affect this response. Unilateral microinjection of DOI (10µg/0.3µl) into the IC disrupted PPI, while microinjection of the 5-HT2A receptor antagonist ritanserin (4µg/0.3µl), into this structure did not alter PPI. We also examined the ability of the atypical antipsychotic clozapine (5.0mg/kg; I.P.) to reverse the disruption of PPI produced by unilateral microinjections of DOI into the IC of rats. Pretreatment with clozapine blocked DOI-induced disruption of PPI. Altogether, these results suggest that serotonin-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic clozapine.