Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 100(2): e02541, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707454

RESUMO

Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events.

2.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674622

RESUMO

(1) Background: The identification of microorganisms includes traditional biochemical methods, molecular biology methods evaluating the conserved regions of rRNA, and the molecular biology of proteins (proteomics), such as MALDI-TOF MS mass spectrometry. This work aimed to identify the biodiversity of yeasts associated with stingless bee species' honey and pollen, Melipona scutellaris, Nannotrigona testaceicornes, and Tetragonisca angustula, from the region of São Gonçalo dos Campos-Bahia (BA) state, Brazil. (2) Methods: Cellular proteins were extracted from 2837 microbial isolates (pollen and honey) and identified via MALDI-TOF MS. The identified yeast species were also compared to the mass spectra of taxonomically well-characterized reference strains, available from the National Center of Biotechnology Information (NCBI) database. (3) Results: Nine yeast species were identified: Candida maltosa, Candida norvegica, Kazachstania telluris, Schizosaccharomyces pombe, Scheffersomyces insectosus, Meyerozyma guilliermondii, Brettanomyces bruxellensis, Kazachstania exigua, and Starmerella lactis-condensi. Nannotrigona testaceicornes pollen had the highest number of yeast colonies. The yeasts Brettanomyces bruxellensis and Kazachstania telluris showed high populations in the samples of Nannotrigona testaceicornes and Melipona scutellaris, respectively. This work shows that there is some sharing of the same species of yeast between honey and pollen from the same beehive. (4) Conclusions: A total of 71.84% of the identified species present a high level of confidence at the species level. Eight yeast species (Candida maltosa, Candida norvegica, Kazachstania telluris, Schizosaccharomyces pombe, Scheffersomyces insectosus, Meyerozyma guilliermondii, Kazachstania exigua, and Starmerella lactis-condensi) were found for the first time in the samples that the authors inspected. This contributes to the construction of new knowledge about the diversity of yeasts associated with stingless bee products, as well as to the possibility of the biotechnological application of some yeast species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA