Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Surg Res ; 234: 167-177, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527470

RESUMO

BACKGROUND: Anastomotic leakage is the deadliest complication of colonic procedures. Ghrelin is an orexigenic hormone with potent actions on growth hormone release and functions in the processes of growth, tissue inflammation, repair, and oxidative stress. We evaluated the hypothesis that the exogenous administration of ghrelin causes beneficial effects on the healing of colonic anastomosis. MATERIALS AND METHODS: Sixty-four male Wistar rats were randomly assigned to eight subgroups receiving postoperative intraperitoneal administration of ghrelin (23 µg/kg/d) or saline after a colonic anastomosis. The anastomotic tissue was evaluated on the third, seventh, and 14th postoperative days. Anastomotic bursting pressure, histological parameters, hydroxyproline content, and tissue oxidative stress markers were compared. RESULTS: There was a significant increase in the mean anastomotic bursting pressure in the ghrelin subgroup on the seventh postoperative day (P = 0.035). Histological evaluation demonstrated a significant difference in the neutrophilic infiltrate (P = 0.035) on the third and 14th d and in apoptosis (P = 0.004), granulation tissue (P = 0.011) and peritoneal inflammation (P = 0.014) on the 14th postoperative day. There was a statistically significant increase in the hydroxyproline content in the ghrelin subgroup on the 14th postoperative day (P = 0.043). There were significant differences in the nitrite tissue levels (P = 0.021) on day 3 and in reactive oxygen species (P = 0.012) on day 14. CONCLUSIONS: The administration of ghrelin had beneficial anti-inflammatory and antioxidant effects, increasing the resistance of the anastomosis and the hydroxyproline tissue content in the postoperative period.


Assuntos
Fístula Anastomótica/prevenção & controle , Antioxidantes/farmacologia , Colo/cirurgia , Grelina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Cuidados Pós-Operatórios/métodos , Cicatrização/efeitos dos fármacos , Anastomose Cirúrgica , Animais , Antioxidantes/uso terapêutico , Colo/efeitos dos fármacos , Esquema de Medicação , Grelina/uso terapêutico , Injeções Intraperitoneais , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Resultado do Tratamento
2.
Mol Genet Metab ; 125(1-2): 104-111, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935801

RESUMO

Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus.


Assuntos
Biopterinas/análogos & derivados , Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Biopterinas/administração & dosagem , Feminino , GTP Cicloidrolase/genética , Hipocampo/fisiologia , Humanos , Masculino , Memória de Longo Prazo/fisiologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/genética , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
Cell Biol Int ; 42(6): 725-733, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29624777

RESUMO

Parkinson's disease (PD), the second-most prevalent neurodegenerative disease, is primarily characterized by neurodegeneration in the substantia nigra pars compacta, resulting in motor impairment. Loss-of-function mutations in parkin are the major cause of the early onset familial form of the disease. Although rodents deficient in parkin (parkin(-/-) ) have some dopaminergic system dysfunction associated with central oxidative stress and energy metabolism deficiencies, these animals only display nigrostriatal pathway degeneration under inflammatory conditions. This study investigated the impact of the inflammatory stimulus induced by lypopolisaccharide (LPS) on tetrahydrobiopterin (BH4) synthesizing enzymes (de novo and salvage pathways), since this cofactor is essential for dopamine synthesis. The mitochondrial content and architecture was investigated in the striatum of LPS-exposed parkin(-/-) mice. As expected, the LPS (0.33 mg/kg; i.p.) challenge compromised spontaneous locomotion and social interaction with juvenile parkin(-/-) and WT mice. Moreover, the genotype impacted the kinetics of the investigation of the juvenile. The inflammatory scenario did not induce apparent changes in mitochondrial ultrastructure; however, it increased the quantity of mitochondria, which were of smaller size, and provoked the perinuclear distribution of the organelle. Furthermore, the BH4 de novo biosynthetic pathway failed to be up-regulated in the LPS challenge, a well-known stimulus for its activation. The LPS treatment increased sepiapterin reductase (SPR) expression, suggesting compensation by the salvage pathway. This might indicate that dopamine synthesis is compromised in parkin(-/-) mice under inflammatory conditions. Finally, this scenario impaired the striatal expression of the transcription factor BDNF, possibly favoring cell death.


Assuntos
Biopterinas/análogos & derivados , Corpo Estriado/metabolismo , Ubiquitina-Proteína Ligases/genética , Oxirredutases do Álcool/metabolismo , Animais , Comportamento Animal , Biopterinas/biossíntese , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Lipopolissacarídeos/farmacologia , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Plasticidade Neuronal/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/veterinária , Ubiquitina-Proteína Ligases/deficiência , Regulação para Cima/efeitos dos fármacos
4.
J Bioenerg Biomembr ; 45(5): 449-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23471523

RESUMO

Interactions of chemicals with cerebral cellular systems are often accompanied by similar changes involving components in non-neural tissues. On this basis, indirect strategies have been developed to investigate neural cell function parameters by methods using accessible cells, including platelets and/or peripheral blood lymphocytes. Therefore, here it was investigated whether peripheral blood markers may be useful for assessing the central toxic effects of methylmercury (MeHg). For this purpose, we investigated platelet mitochondrial physiology in a well-established mouse model of MeHg-induced neurotoxicity, and correlated this peripheral activity with behavioural and central biochemical parameters. In order to characterize the cortical toxicity induced by MeHg (20 and 40 mg/L in drinking water, 21 days), the behavioral parameter namely, short-term object recognition, and the central mitochondrial impairment assessed by measuring respiratory complexes I-IV enzyme activities were determined in MeHg-poisoned animals. Neurotoxicity induced by MeHg exposure provoked compromised cortical activity (memory impairment) and reduced NADH dehydrogenase, complex II and II-III activities in the cerebral cortex. These alterations correlated with impaired systemic platelet oxygen consumption of intoxicated mice, which was characterized by reduced electron transfer activity and uncoupled mitochondria. The data brought here demonstrated that impaired systemic platelet oxygen consumption is a sensitive and non-invasive marker of the brain energy deficits induced by MeHg poisoning. Finally, brain and platelets biochemical alterations significantly correlated with cognitive behavior in poisoned mice. Therefore, it could be proposed the use of platelet oxygen consumption as a peripheral blood marker of brain function in a mouse model MeHg-induced neurotoxicity.


Assuntos
Plaquetas/metabolismo , Encéfalo/metabolismo , Síndromes Neurotóxicas/sangue , Consumo de Oxigênio/fisiologia , Animais , Biomarcadores/sangue , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Compostos de Metilmercúrio , Camundongos , Síndromes Neurotóxicas/metabolismo , Neurotoxinas , Distribuição Aleatória
5.
Pharmacol Biochem Behav ; 198: 173018, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827504

RESUMO

Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Atividade Motora , Isolamento Social , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Abrigo para Animais , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/enzimologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
6.
Mol Neurobiol ; 56(3): 1539-1557, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29948953

RESUMO

Chronic metabolic alterations may represent a risk factor for the development of cognitive impairment, dementia, or neurodegenerative diseases. Hyperglycemia and obesity are known to imprint epigenetic markers that compromise the proper expression of cell survival genes. Here, we showed that chronic hyperglycemia (60 days) induced by a single intraperitoneal injection of streptozotocin compromised cognition by reducing hippocampal ERK signaling and by inducing neurotoxicity in rats. The mechanisms appear to be linked to reduced active DNA demethylation and diminished expression of the neuroprotective transcription factor REST. The impact of the relationship between adiposity and DNA hypermethylation on REST expression was also demonstrated in peripheral blood mononuclear cells in obese children with reduced levels of blood ascorbate. The reversible nature of epigenetic modifications and the cognitive impairment reported in obese children, adolescents, and adults suggest that the correction of the anthropometry and the peripheral metabolic alterations would protect brain homeostasis and reduce the risk of developing neurodegenerative diseases.


Assuntos
Transtornos Cognitivos/etiologia , Diabetes Mellitus Experimental/complicações , Hipocampo/metabolismo , Hiperglicemia/complicações , Proteínas Repressoras/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Metilação de DNA , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Aprendizagem em Labirinto/fisiologia , Ratos , Proteínas Repressoras/genética
7.
Free Radic Biol Med ; 115: 371-382, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29198726

RESUMO

Neopterin, a well-established biomarker for immune system activation, is found at increased levels in the cerebrospinal fluid of individuals affected by neurological/neurodegenerative diseases. Here, neopterin synthesis was investigated in different nerve cells (rodent and human) and in the mouse hippocampus under inflammatory stimuli. We also aimed to investigate whether neopterin preconditioning could modulate the inflammasome activation, a component of the innate immune system. Increased neopterin was detected in human nerve cells supernatants (highest secretion in astrocytes) exposed to lipopolysaccharide (LPS) and interferon-gamma (INF-γ) and in the hippocampus of mice receiving LPS (0.33mg/kg; intraperitoneal). In parallel to the hippocampal-increased neopterin, it was observed a significant increase in the expression of the rate-limiting enzyme of its biosynthetic pathway, and both phenomena occurred before the inflammasome activation. Moreover, a significant inhibition of the inflammasome activation was observed in neopterin pre-conditioned human astrocytes, when challenged with LPS, by reducing IL-1ß, caspase-1 and ASC expression or content, components of the NLRP3 inflammasome. Mechanistically, neopterin might induce eletrophilic stress and consequently the nuclear translocation of the transcription factor Nrf-2, and the anti-inflammatory cytokines IL-10 and IL-1ra release, which would induce the inhibition of the inflammasome activation. Altogether, this strongly suggests an essential role of neopterin during inflammatory processes.


Assuntos
Astrócitos/fisiologia , Hipocampo/metabolismo , Inflamassomos/metabolismo , Inflamação/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Neopterina/metabolismo , Neurônios/fisiologia , Animais , Linhagem Celular Tumoral , Hipocampo/patologia , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Ratos , Transdução de Sinais
8.
Free Radic Biol Med ; 120: 41-55, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29548793

RESUMO

The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.


Assuntos
Transformação Celular Neoplásica/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias Hipofisárias/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Antioxidantes/metabolismo , Metabolismo Energético/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
9.
Epilepsy Res ; 138: 26-31, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29040828

RESUMO

Interictal hypometabolism is commonly measured by 18-fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) in the temporal lobe of patients with mesial temporal lobe epilepsy (MTLE-HS). Left temporal lobe interictal FDG-PET hypometabolism has been associated with verbal memory impairment, while right temporal lobe FDG-PET hypometabolism is associated with nonverbal memory impairment. The biochemical mechanisms involved in these findings remain unknown. In comparison to healthy controls (n=21), surgically treated patients with MTLE-HS (n=32, left side=17) had significant lower scores in the Rey Auditory Verbal Learning Test (RAVLT retention and delayed), Logical Memory II (LMII), Boston Naming test (BNT), Letter Fluency and Category Fluency. We investigated whether enzymatic activities of the mitochondrial enzymes Complex I (C I), Complex II (C II), Complex IV (C IV) and Succinate Dehydrogenase (SDH) from the resected samples of the middle temporal neocortex (mTCx), amygdala (AMY) and hippocampus (HIP) were associated with performance in the RAVLT, LMII, BNT and fluency tests of our patients. After controlling for the side of hippocampus sclerosis, years of education, disease duration, antiepileptic treatment and seizure outcome after surgery, no independent associations were observed between the cognitive test scores and the analyzed mitochondrial enzymatic activities (p>0.37). Results indicate that memory and language impairment observed in MTLE-HS patients are not strongly associated with the levels of mitochondrial CI, CII, SDH and C IV enzymatic activities in the temporal lobe structures ipsilateral to the HS lesion.


Assuntos
Encéfalo/metabolismo , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Transtornos da Memória/etiologia , Complexos Multienzimáticos/metabolismo , Adulto , Anticonvulsivantes/uso terapêutico , Encéfalo/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Eletroencefalografia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Transtornos da Memória/diagnóstico por imagem , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Estatísticas não Paramétricas
10.
Autism Res ; 9(6): 621-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26497015

RESUMO

Dysfunction of the serotoninergic and glutamatergic systems is implicated in the pathogenesis of autism spectrum disorder (ASD) together with various neuroinflammatory mediators. As the kynurenine pathway (KP) of tryptophan degradation is activated in neuroinflammatory states, we hypothesized that there may be a link between inflammation in ASD and enhanced KP activation resulting in reduced serotonin synthesis from tryptophan and production of KP metabolites capable of modulating glutamatergic activity. A cross-sectional study of 15 different Omani families with newly diagnosed children with ASD (n = 15) and their age-matched healthy siblings (n = 12) was designed. Immunological profile and the KP metabolic signature were characterized in the study participants. Our data indicated that there were alterations to the KP in ASD. Specifically, increased production of the downstream metabolite, quinolinic acid, which is capable of enhancing glutamatergic neurotransmission was noted. Correlation studies also demonstrated that the presence of inflammation induced KP activation in ASD. Until now, previous studies have failed to establish a link between inflammation, glutamatergic activity, and the KP. Our findings also suggest that increased quinolinic acid may be linked to 16p11.2 mutations leading to abnormal glutamatergic activity associated with ASD pathogenesis and may help rationalize the efficacy of sulforaphane treatment in ASD. Autism Res 2016, 9: 621-631. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Ácido Glutâmico/imunologia , Ácido Glutâmico/metabolismo , Cinurenina/imunologia , Cinurenina/metabolismo , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Omã , Irmãos
11.
Neurotox Res ; 25(2): 147-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23873578

RESUMO

Exercise improves the central nervous system (CNS) functions and is widely recommended for neurological patients with, e.g., Alzheimer's and Parkinson's disease (PD). However, exercise-induced neuroprotection is an open discussion. Here, the intranasal administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 65 mg/kg) caused death of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the striatum of C57BL/6 mice. 1-Methyl-4-phenylpyridinium, the active metabolite of MPTP, also inhibited complex-I activity of mitochondria isolated from the CNS of mice. However, 6 weeks of exercise on voluntary running wheels did not protect against nigrostriatal neurodegeneration or mitochondrial inhibition, suggesting that benefits of exercise for PD may not be associated with neuroprotection. The literature presents other candidates, such as neurotrophins or increased antioxidant defenses.


Assuntos
Intoxicação por MPTP/prevenção & controle , Condicionamento Físico Animal , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , 1-Metil-4-fenilpiridínio/administração & dosagem , Administração Intranasal , Animais , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Dopamina/análise , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
12.
Protoplasma ; 250(6): 1303-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23708376

RESUMO

Ultraviolet-B radiation (UVBR) affects plants in many important ways, including reduction of growth rate and primary productivity, and changes in ultrastructures. Rice (Oryza sativa) is one of the most cultivated cereals in the world, along with corn and wheat, representing over 50% of agricultural production. In this study, we examined O. sativa plants exposed to ambient outdoor radiation and laboratory-controlled photosynthetically active radiation (PAR) and PAR + UVBR conditions for 2 h/day during 30 days of cultivation. The samples were studied for morphological and ultrastructural characteristics, and physiological parameters. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa and leaf morphology (leaf index, leaf area and specific leaf area, trichomes, and papillae), plant biomass (dry and fresh weight), photosynthetic pigments, phenolic compounds, and protein content. As a photoprotective acclimation strategy against PAR + UVBR damage, an increase of 66.24% in phenolic compounds was observed. Furthermore, PAR + UVBR treatment altering the levels of chlorophylls a and b, and total chlorophyll. In addition, total carotenoid contents decreased after PAR + UVBR treatment. The results strongly suggested that PAR + UVBR negatively affects the ultrastructure, morphology, photosynthetic pigments, and growth rates of leaf of O. sativa and, in the long term, it could affect the viability of this economically important plant.


Assuntos
Oryza/fisiologia , Oryza/ultraestrutura , Raios Ultravioleta , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Solubilidade
13.
Protoplasma ; 249(2): 353-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21656054

RESUMO

The in vivo effect of ultraviolet radiation-B (UVBR) in apical segments of Chondracanthus teedei was examined. Over a period of 7 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 µmol photons m(-2) s(-1) and PAR + UVBR at 1.6 W m(-2) for 3 h per day. The samples were processed for electron microscopy and histochemistry; also was analyzed growth rates, mitochondrial activity, protein levels, content of photosynthetic pigments and photosynthetic performance. UVBR elicited increased cell wall thickness and accumulation of plastoglobuli, changes in mitochondrial organization and destruction of chloroplast internal organization. Compared to controls, algae exposed to PAR + UVBR showed a growth rate reduction of 55%. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to PAR + UVBR. This result agrees with the decreased photosynthetic performance observed after exposing algae to PAR + UVBR. Irradiation also elicited increased activity of the antioxidant enzyme glutathione peroxidase and decreased mitochondrial NADH dehydrogenase activity, which correlated with the decreased protein content in plants exposed to PAR + UVBR. Taken together, these findings strongly indicate that UVBR negatively affects the architecture and metabolism of the carragenophyte C. teedei.


Assuntos
Rodófitas/metabolismo , Rodófitas/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Glutationa Peroxidase/metabolismo , Mitocôndrias/efeitos da radiação , NADH Desidrogenase/metabolismo , Fotossíntese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA