RESUMO
Forkhead box O (FOXO; DAF-16 in worms) transcription factors, which are of vital importance in cell-cycle control, stress resistance, tumor suppression, and organismal lifespan, are largely regulated through nucleo-cytoplasmic shuttling. Insulin signaling keeps FOXO/DAF-16 cytoplasmic, and hence transcriptionally inactive. Conversely, as in loss of insulin signaling, reactive oxygen species (ROS) can activate FOXO/DAF-16 through nuclear accumulation. How ROS regulate the nuclear translocation of FOXO/DAF-16 is largely unknown. Cysteine oxidation can stabilize protein-protein interactions through the formation of disulfide-bridges when cells encounter ROS. Using a proteome-wide screen that identifies ROS-induced mixed disulfide-dependent complexes, we discovered several interaction partners of FOXO4, one of which is the nuclear import receptor transportin-1. We show that disulfide formation with transportin-1 is required for nuclear localization and the activation of FOXO4/DAF-16 induced by ROS, but not by the loss of insulin signaling. This molecular mechanism for nuclear shuttling is conserved in C. elegans and directly connects redox signaling to the longevity protein FOXO/DAF-16.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Cistina/metabolismo , Fatores de Transcrição Forkhead , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , beta Carioferinas/fisiologiaRESUMO
BACKGROUND: Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. METHODS: Here, we present a method to obtain high-quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. RESULTS: After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression, we could identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton-associated protein 4 as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Cytoskeleton-associated protein 4 inhibition in activated fibroblasts treated with transforming growth factor ß triggered a greater increase in the expression of genes related to activated fibroblasts compared with control, suggesting a role of cytoskeleton-associated protein 4 in modulating fibroblast activation in the injured heart. CONCLUSIONS: Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miofibroblastos/patologia , Fenótipo , Transdução de SinaisRESUMO
RATIONALE: CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)-based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized. OBJECTIVE: To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice. METHODS AND RESULTS: We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6, Sav1, and Tbx20, using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1, which increased the editing efficiency. CONCLUSIONS: Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo.
Assuntos
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Miócitos Cardíacos/fisiologia , RNA Guia de Cinetoplastídeos/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , RNA Guia de Cinetoplastídeos/administração & dosagemRESUMO
BACKGROUND: Cardiac ischemic injury induces a pathological remodeling response, which can ultimately lead to heart failure. Detailed mechanistic insights into molecular signaling pathways relevant for different aspects of cardiac remodeling will support the identification of novel therapeutic targets. METHODS: Although genome-wide transcriptome analysis on diseased tissues has greatly advanced our understanding of the regulatory networks that drive pathological changes in the heart, this approach has been disadvantaged by the fact that the signals are derived from tissue homogenates. Here we used tomo-seq to obtain a genome-wide gene expression signature with high spatial resolution spanning from the infarcted area to the remote to identify new regulators of cardiac remodeling. Cardiac tissue samples from patients suffering from ischemic heart disease were used to validate our findings. RESULTS: Tracing transcriptional differences with a high spatial resolution across the infarcted heart enabled us to identify gene clusters that share a comparable expression profile. The spatial distribution patterns indicated a separation of expressional changes for genes involved in specific aspects of cardiac remodeling, such as fibrosis, cardiomyocyte hypertrophy, and calcium handling (Col1a2, Nppa, and Serca2). Subsequent correlation analysis allowed for the identification of novel factors that share a comparable transcriptional regulation pattern across the infarcted tissue. The strong correlation between the expression levels of these known marker genes and the expression of the coregulated genes could be confirmed in human ischemic cardiac tissue samples. Follow-up analysis identified SOX9 as common transcriptional regulator of a large portion of the fibrosis-related genes that become activated under conditions of ischemic injury. Lineage-tracing experiments indicated that the majority of COL1-positive fibroblasts stem from a pool of SOX9-expressing cells, and in vivo loss of Sox9 blunted the cardiac fibrotic response on ischemic injury. The colocalization between SOX9 and COL1 could also be confirmed in patients suffering from ischemic heart disease. CONCLUSIONS: Based on the exact local expression cues, tomo-seq can serve to reveal novel genes and key transcription factors involved in specific aspects of cardiac remodeling. Using tomo-seq, we were able to unveil the unknown relevance of SOX9 as a key regulator of cardiac fibrosis, pointing to SOX9 as a potential therapeutic target for cardiac fibrosis.
Assuntos
Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição SOX9/biossíntese , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Feminino , Fibrose , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Proteínas Musculares/genética , Isquemia Miocárdica/genética , Fatores de Transcrição SOX9/genéticaRESUMO
AIMS: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that is characterized by progressive loss of myocardium that is replaced by fibro-fatty cells, arrhythmias, and sudden cardiac death. While myocardial degeneration and fibro-fatty replacement occur in specific locations, the underlying molecular changes remain poorly characterized. Here, we aim to delineate local changes in gene expression to identify new genes and pathways that are relevant for specific remodelling processes occurring during ACM. METHODS AND RESULTS: Using Tomo-Seq, genome-wide transcriptional profiling with high spatial resolution, we created transmural epicardial-to-endocardial gene expression atlases of explanted ACM hearts to gain molecular insights into disease-driving processes. This enabled us to link gene expression profiles to the different regional remodelling responses and allowed us to identify genes that are potentially relevant for disease progression. In doing so, we identified distinct gene expression profiles marking regions of cardiomyocyte degeneration and fibro-fatty remodelling and revealed Zinc finger and BTB domain-containing protein 11 (ZBTB11) to be specifically enriched at sites of active fibro-fatty replacement of myocardium. Immunohistochemistry indicated ZBTB11 to be induced in cardiomyocytes flanking fibro-fatty areas, which could be confirmed in multiple cardiomyopathy patients. Forced overexpression of ZBTB11 induced autophagy and cell death-related gene programmes in human cardiomyocytes, leading to increased apoptosis. CONCLUSION: Our study shows the power of Tomo-Seq to unveil new molecular mechanisms in human cardiomyopathy and uncovers ZBTB11 as a novel driver of cardiomyocyte loss.
Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Humanos , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , TranscriptomaRESUMO
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
RESUMO
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive disease characterized by electrophysiological and structural remodeling of the ventricles. However, the disease-causing molecular pathways, as a consequence of desmosomal mutations, are poorly understood. Here, we identified a novel missense mutation within desmoplakin in a patient clinically diagnosed with ACM. Using CRISPR-Cas9, we corrected this mutation in patient-derived human induced pluripotent stem cells (hiPSCs) and generated an independent knockin hiPSC line carrying the same mutation. Mutant cardiomyocytes displayed a decline in connexin 43, NaV1.5, and desmosomal proteins, which was accompanied by a prolonged action potential duration. Interestingly, paired-like homeodomain 2 (PITX2), a transcription factor that acts a repressor of connexin 43, NaV1.5, and desmoplakin, was induced in mutant cardiomyocytes. We validated these results in control cardiomyocytes in which PITX2 was either depleted or overexpressed. Importantly, knockdown of PITX2 in patient-derived cardiomyocytes is sufficient to restore the levels of desmoplakin, connexin 43, and NaV1.5.
Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MutaçãoRESUMO
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Assuntos
Cardiomiopatias , Placofilinas , Humanos , Camundongos , Animais , Lactente , Proteólise , Placofilinas/genética , Placofilinas/metabolismo , Miócitos Cardíacos/metabolismo , Mutação/genética , Cardiomiopatias/genéticaRESUMO
The efficiency of the repair process following ischemic cardiac injury is a crucial determinant for the progression into heart failure and is controlled by both intra- and intercellular signaling within the heart. An enhanced understanding of this complex interplay will enable better exploitation of these mechanisms for therapeutic use. We used single-cell transcriptomics to collect gene expression data of all main cardiac cell types at different time-points after ischemic injury. These data unveiled cellular and transcriptional heterogeneity and changes in cellular function during cardiac remodeling. Furthermore, we established potential intercellular communication networks after ischemic injury. Follow up experiments confirmed that cardiomyocytes express and secrete elevated levels of beta-2 microglobulin in response to ischemic damage, which can activate fibroblasts in a paracrine manner. Collectively, our data indicate phase-specific changes in cellular heterogeneity during different stages of cardiac remodeling and allow for the identification of therapeutic targets relevant for cardiac repair.
Assuntos
Perfilação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Análise de Célula Única , Transcriptoma , Remodelação Ventricular , Cicatrização , Microglobulina beta-2/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fatores de Tempo , Microglobulina beta-2/metabolismoRESUMO
AIMS: Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS: Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION: Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.
Assuntos
Cardiomegalia/genética , Perfilação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Transcriptoma , Remodelação Ventricular/genética , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismoRESUMO
The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-ß sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Cisteína/química , Amiloide/química , Ciclo Celular , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Multimerização Proteica , Estrutura Secundária de ProteínaRESUMO
UNLABELLED: Reduction-oxidation (redox) signaling, the translation of an oxidative intracellular environment into a cellular response, is mediated by the reversible oxidation of specific cysteine thiols. The latter can result in disulfide formation between protein hetero- or homodimers that alter protein function until the local cellular redox environment has returned to the basal state. We have previously shown that this mechanism promotes the nuclear localization and activity of the Forkhead Box O4 (FOXO4) transcription factor. AIMS: In this study, we sought to investigate whether redox signaling differentially controls the human FOXO3 and FOXO4 paralogs. RESULTS: We present evidence that FOXO3 and FOXO4 have acquired paralog-specific cysteines throughout vertebrate evolution. Using a proteome-wide screen, we identified previously unknown redox-dependent FOXO3 interaction partners. The nuclear import receptors Importin-7 (IPO7) and Importin-8 (IPO8) form a disulfide-dependent heterodimer with FOXO3, which is required for its reactive oxygen species-induced nuclear translocation. FOXO4 does not interact with IPO7 or IPO8. INNOVATION AND CONCLUSION: IPO7 and IPO8 control the nuclear import of FOXO3, but not FOXO4, in a redox-sensitive and disulfide-dependent manner. Our findings suggest that evolutionary acquisition of cysteines has contributed to regulatory divergence of FOXO paralogs, and that phylogenetic analysis can aid in the identification of cysteines involved in redox signaling.
Assuntos
Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , beta Carioferinas/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cisteína/metabolismo , Fatores de Transcrição Forkhead , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em TandemRESUMO
Forkhead box O (FOXO) transcription factors are involved in various cellular processes, including cell proliferation, stress resistance, metabolism, and longevity. Regulation of FOXO transcriptional activity occurs mainly through a variety of post-translational modifications, including phosphorylation, acetylation, and ubiquitination. Here we describe nemo-like kinase (NLK) as a novel regulator of FOXOs. NLK binds to and phosphorylates FOXO1, FOXO3a, and FOXO4 on multiple residues. NLK acts as a negative regulator of FOXO transcriptional activity. For FOXO4 we show that NLK-mediated loss of FOXO4 activity co-occurs with inhibition of FOXO4 monoubiquitination. Previously, we have shown that oxidative stress-induced monoubiquitination of FOXO4 stimulates its transactivation, which leads to activation of an antioxidant defensive program. Conversely, NLK-dependent inhibition of FOXO4 activity can provide a means to downregulate this defensive program, when oxidative stress reaches a level beyond which repair is no longer feasible and cells need to undergo apoptosis.