Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genome ; 55(12): 883-900, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23231606

RESUMO

Iron is involved in many metabolic processes, such as respiration and photosynthesis, and therefore an essential element for plant development. Comparative analysis of gene copies between crops and lower plant groups can shed light on the evolution of genes important to iron homeostasis. A phylogenetic analysis of five metal homeostasis gene families (NAS, NRAMP, YSL, FRO, and IRT) selected in monocots, dicots, gymnosperms, and bryophytes was performed. The homologous genes were found using known iron homeostasis gene sequences of Oryza sativa, Arabidopsis thaliana, and Physcomitrella patens as queries. The phylogeny was constructed using bioinfomatics tools. A total of 243 gene sequences for 30 plant species were found. The evolutionary fingerprint analysis suggested a purifying selective pressure of iron homeostasis genes for most of the plant gene homologues. The NAS and YSL genes appear to accumulate more negative selection sites, suggesting a strong selective pressure on these two gene families. The divergence time analysis indicates IRT as the most ancient gene family and FRO as the most recent. NRAMP and YSL genes appear to share a close relationship in the evolution of iron homeostasis gene families.


Assuntos
Embriófitas/genética , Genes de Plantas , Ferro/metabolismo , Família Multigênica , Filogenia , Seleção Genética , Impressões Digitais de DNA , Homeostase/genética
2.
BMC Res Notes ; 12(1): 361, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238948

RESUMO

OBJECTIVES: This study was conducted to establish a method for early, quick and cheap screening of iron excess tolerance in rice (Oryza sativa L.) cultivars. RESULTS: Based on the experiments, iron excess leads to reduction in shoot length (SL) and this can be a useful characteristic for adequate screening of tolerant genotypes. The sensitive genotypes Nipponbare and BR-IRGA 409 indicated higher accumulation of iron in their tissues while BRS-Agrisul and Epagri 108 also accumulated iron, but at lower concentrations. BR-IRGA 410 displayed an intermediate phenotype regarding iron accumulation. No changes in shoot Cu content can be observed when comparing treatments. On the other hand, an increase was seen for Zn and Mn when shoots are subjected to Fe2+ excess. Fe stress at a lower concentration than 7 mM increased Zn but decreased Mn contents in shoots of BR-IRGA 409. Strong positive correlations were found here for Fe × Zn (0.93); Fe × Mn (0.97) and Zn × Mn (0.92), probably due to the Fe-induced activation of bivalent cation transporters. Results show that genotypes scored as sensitive present higher concentration of Fe in shoots and this is an efficient method to characterize rice cultivars regarding iron response.


Assuntos
Adaptação Fisiológica/genética , Testes Genéticos , Ferro/toxicidade , Oryza/genética , Oryza/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Genótipo , Oryza/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA