Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 34(6): 1282-1290, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31989713

RESUMO

Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Suplementos Nutricionais/análise , Obesidade/tratamento farmacológico , Persea/química , Zingiber officinale/química , Animais , Fármacos Antiobesidade/farmacologia , Humanos
2.
J Cell Physiol ; 231(5): 1045-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26381504

RESUMO

The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type.


Assuntos
Fibras Musculares Esqueléticas/patologia , Condicionamento Físico Animal , Animais , Peso Corporal , Comportamento Alimentar , Hipertrofia , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Fosforilação , Transdução de Sinais
3.
Aging Clin Exp Res ; 28(5): 833-41, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26620674

RESUMO

Age-associated decline in skeletal muscle mass and strength is associated with oxidative stress and Ca(2+) homeostasis disturbance. Exercise should be considered a viable modality to combat aging of skeletal muscle. This study aimed to investigate whether continuous and fractionated training could be useful tools to attenuate oxidative damage and retain calcium-handling proteins. We conducted the study using 24-month-old male Wistar rats, divided into control, continuous, and fractionated groups. Animals ran at 13 m min(-1) for five consecutive days (except weekends) for 6 weeks, for a total period of 42 days. Each session comprised 45 min of exercise, either continuous or divided into three daily sessions of 15 min each. Metabolic and oxidative stress markers, protein levels of mitochondrial transcription factors, and calcium-handling proteins were analyzed. Continuous exercise resulted in reduced ROS production as well as showed a decrease in TBARS levels and carbonyl content. On the other hand, fractionated training increased the antioxidant enzyme activities. The ryanodine receptor and phospholamban protein were regulated by continuous training while sodium calcium exchange protein was increased by the fractionated training. These data suggest that intracellular Ca(2+) can be modulated by various training stimuli. In addition, the modulation of oxidative stress by continuous and fractionated training may play an important regulatory role in the muscular contraction mechanism of aged rats, due to changes in calcium metabolism.


Assuntos
Envelhecimento/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal , Animais , Masculino , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Oxirredução , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Mediators Inflamm ; 2014: 987017, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002755

RESUMO

The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 ß , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Condicionamento Físico Animal/fisiologia , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Masculino , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Ratos , Ratos Wistar
5.
Am J Physiol Endocrinol Metab ; 305(5): E649-59, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23880311

RESUMO

Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRß and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.


Assuntos
Hipotálamo/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Western Blotting , Corticosterona/urina , Hipotálamo/enzimologia , Imuno-Histoquímica , Inflamação/enzimologia , Insulina/sangue , Interleucina-6/sangue , Interleucina-6/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/enzimologia , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais , Organismos Livres de Patógenos Específicos
6.
PLoS Biol ; 8(8)2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20808781

RESUMO

Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.


Assuntos
Anti-Inflamatórios/metabolismo , Retículo Endoplasmático/patologia , Proteínas I-kappa B/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Hiperfagia , Hipotálamo/fisiopatologia , Insulina/fisiologia , Interleucina-10/farmacologia , Interleucina-6/farmacologia , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Ratos , Ratos Wistar
7.
Br J Nutr ; 110(9): 1580-90, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23551926

RESUMO

The exact mechanisms of the relationship between obesity and cardiovascular events are not yet fully understood; however, oxidative stress may be involved. Thus, the aim of the present study was to evaluate the effects of resveratrol and fish oil on catecholamine-induced mortality in obese rats. To begin with, rats were divided into five groups: (1) lean, (2) obese, (3) obese supplemented with resveratrol, (4) obese supplemented with fish oil and (5) obese supplemented with resveratrol and fish oil (n 18 rats per group), for 2 months. After supplementation, the groups were subdivided as with (n 10) and without (n 8) cardiovascular catecholaminergic stress after isoproterenol (60 mg/kg) injection. At 24 h later, the survival rate was analysed. The obese group showed lower survival rates (10 %) when compared with the lean group (70 %). On the other hand, resveratrol (50 %) and fish oil (40 %) increased the survival rate of obese rats (χ(2) test, P= 0·019). Biochemical analyses of the myocardium and aorta revealed that obese rats had higher levels of superoxide and oxidative damage to lipids and protein. This was associated with reduced superoxide dismutase and glutathione peroxidase activity in both the myocardium and aorta. The supplementation increased antioxidant enzyme activities and reduced oxidative damage. We also evaluated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 antioxidant pathway. Nrf2 protein levels that were reduced in obese rats were increased by the antioxidant treatment. Taken together, these results showed that resveratrol and fish oil reduce catecholamine-induced mortality in obese rats, partly through the reduction of oxidative stress.


Assuntos
Aorta/metabolismo , Catecolaminas/metabolismo , Óleos de Peixe/uso terapêutico , Miocárdio/metabolismo , Obesidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aorta/efeitos dos fármacos , Catecolaminas/farmacologia , Gorduras na Dieta/farmacologia , Gorduras na Dieta/uso terapêutico , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/metabolismo , Obesidade/mortalidade , Ratos , Ratos Wistar , Resveratrol , Estilbenos/farmacologia
8.
Mediators Inflamm ; 2013: 635470, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431242

RESUMO

The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 µg/mg epigallocatechin, 95 µg/mg epigallocatechin gallate, 20.8 µg/mg epicatechin gallate, and 4.9 µg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Lipólise/efeitos dos fármacos , Obesidade/tratamento farmacológico , Chá/química , Adiponectina/metabolismo , Animais , Catequina/análogos & derivados , Catequina/uso terapêutico , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Interleucina-10/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Sports Sci ; 31(11): 1164-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560674

RESUMO

Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48 h). Cr supplementation was administered as a solution of 300 mg · kg body weight(-1) · day(-1) in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h(-1) until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1ß), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1ß, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P < 0.05). There are positive correlations between Cr kinase and TBARS and TNF-α 48 hours after eccentric exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.


Assuntos
Creatina/farmacologia , Suplementos Nutricionais , Inflamação , Estresse Oxidativo/efeitos dos fármacos , Resistência Física/fisiologia , Músculo Quadríceps/efeitos dos fármacos , Corrida/fisiologia , Animais , Antioxidantes/metabolismo , Creatina Quinase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Condicionamento Físico Animal/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Ratos , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa/metabolismo
10.
Nutr J ; 11: 74, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22989045

RESUMO

AIM: The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. DESIGN: The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15-19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR). RESULTS: The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels. CONCLUSIONS: The present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.


Assuntos
Endotoxinas/sangue , Resistência à Insulina , Obesidade/terapia , Adiponectina/sangue , Adiposidade , Adolescente , Índice de Massa Corporal , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Homeostase , Humanos , Insulina/sangue , Interleucina-6/sangue , Estilo de Vida , Estudos Longitudinais , Masculino , Obesidade/sangue , Inquéritos e Questionários , Redução de Peso , Adulto Jovem
11.
J Nanobiotechnology ; 10: 11, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22410000

RESUMO

BACKGROUND: Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound) with gold nanoparticles (GNP) on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. MATERIALS AND METHODS: Animals were divided in nine groups: sham (uninjured muscle); muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were measured as inflammatory parameters. RESULTS: Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p < 0.050). It also showed a significant decrease in TNF-α and IL-1ß levels (p < 0.050) when compared to muscle injury without treatment group. CONCLUSIONS: Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.


Assuntos
Géis/uso terapêutico , Ouro/química , Nanopartículas Metálicas/uso terapêutico , Músculos/lesões , Doenças Musculares/terapia , Animais , Catalase/metabolismo , Modelos Animais de Doenças , Géis/química , Glutationa Peroxidase/metabolismo , Interleucina-1beta/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/química , Músculos/efeitos dos fármacos , Doenças Musculares/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Terapia por Ultrassom
12.
J Cell Physiol ; 226(3): 666-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20717955

RESUMO

Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation.


Assuntos
Resistência à Insulina , Miocárdio/enzimologia , Obesidade/enzimologia , Condicionamento Físico Animal , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Inflamação/patologia , Insulina/metabolismo , Insulina/farmacologia , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Scand J Gastroenterol ; 46(11): 1381-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21936721

RESUMO

OBJECTIVE: The present study investigates the level of Sterol-regulatory element-binding proteins (SREBP-1c) and related proteins in obese mice (DIO) treated with SREBP-1c antisense oligonucleotide (ASO) to observe a reversal of steatosis. MATERIALS AND METHODS: Swiss mice were fed on chow containing 61 kJ% saturated fat for 8 weeks to develop obesity. After this period, one group of animals was used to assess the molecular effects of SREBP-1c antisense oligonucleotide treatment by immunoblot analysis in a dose-response curve (0; 1.0; 2.0; 3.0; 4.0 nmol/day). After the dose (3.0 nmol/day) was determined, another group was treated for 14 days. After a period of 24 h following the last injection mice were killed and plasma and hepatic tissue were obtained to evaluate plasma triglycerides and total liver fat. Western blot was performed to evaluate SREBP-1c, FAS, SCD-1, PPARγ and CPT1 expression and AMPK[Thr172] and ACC[Ser79] phosphorylation. Livers were stained using the hematoxylin and eosin method for histological analysis. RESULTS: Body weight, epididymal fat and glucose levels were not affected by one daily dose of ASO. However, total plasma triglycerides and total liver fat were significantly reduced. Also, this treatment inhibited SREBP-1c and reduced protein levels of a series of proteins involved in lipogenesis, including ACC, FAS and SCD-1. Moreover, mice treated with ASO presented a significant reduction in macroscopic and microscopic features of hepatic steatosis. CONCLUSION: Our results demonstrate that the inhibition of SREBP-1c decreased the expression of lipogenic enzymes, reducing the accumulation of triglycerides and, finally, reversing hepatic steatosis in mice.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/enzimologia , Oligonucleotídeos Antissenso/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/química , Acetil-CoA Carboxilase/química , Adiposidade , Animais , Ácido Graxo Sintases/metabolismo , Fígado Gorduroso/patologia , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Oligonucleotídeos Antissenso/uso terapêutico , PPAR gama/metabolismo , Fosforilação , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/sangue
14.
Cell Biochem Funct ; 29(1): 43-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21264889

RESUMO

Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical-mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE). Twenty-four male rats were divided into the following groups (n = 6): control; EE; EE plus taurine (EE + Taurine); EE plus saline (EE + Saline). Taurine was administered as a 1-ml 300 mg kg(-1) per body weight (BW) day(-1) solution in water by gavage, for 15 consecutive days. Starting on the 14th day of supplementation, the animals were submitted to one 90-min downhill run session and constant velocity of 1·0 km h(-1) . Forty-eight hours after the exercise session, the animals were killed and the quadriceps muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, total thiol content and antioxidant enzyme were analysed. Taurine supplementation was found to decrease superoxide radical production, CK, lipoperoxidation and carbonylation levels and increased total thiol content in skeletal muscle, but it did not affect antioxidant enzyme activity after EE. The present study suggests that taurine affects skeletal muscle contraction by decreasing oxidative stress, in association with decreased superoxide radical production.


Assuntos
Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Taurina/farmacologia , Animais , Creatina Quinase/efeitos dos fármacos , Creatina Quinase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Carbonilação Proteica/efeitos dos fármacos , Ratos , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/metabolismo , Superóxidos/análise , Superóxidos/metabolismo
15.
Eur J Appl Physiol ; 111(9): 2015-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21249392

RESUMO

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.


Assuntos
Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Tecido Adiposo/patologia , Animais , Terapia por Exercício , Proteínas I-kappa B/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Masculino , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/terapia , Fosforilação , Ratos , Ratos Wistar , Natação/fisiologia
16.
J Physiol ; 588(Pt 12): 2239-53, 2010 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421289

RESUMO

Protein hepatocyte nuclear factor 4alpha (HNF-4alpha) is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. HNF-4alpha and Foxo1 can physically interact with each other and represent an important signal transduction pathway that regulates the synthesis of glucose in the liver. Foxo1 and HNF-4alpha interact with their own binding sites in the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) promoters, and this binding is required for their effects on those promoters. However, the effect of physical activity on the HNF-4alpha/Foxo1 pathway is currently unknown. Here, we investigate the protein levels of HNF-4alpha and the HNF-4alpha/Foxo1 pathway in the liver of leptin-deficient (ob/ob) and diet-induced obese Swiss (DIO) mice after acute exercise. The ob/ob and DIO mice swam for four 30 min periods, with 5 min rest intervals for a total swimming time of 2h. Eight hours after the acute exercise protocol, the mice were submitted to an insulin tolerance test (ITT) and determination of biochemical and molecular parameters. Acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing HNF-4alpha protein levels in the liver of DIO and ob/ob mice under fasting conditions. These phenomena were accompanied by a reduction in the expression of gluconeogenesis genes, such as PEPCK and G6Pase. Importantly, the PI3K inhibitor LY292004 reversed the acute effect of exercise on fasting hyperglycaemia, confirming the involvement of the PI3K pathway. The present study shows that exercise acutely improves the action of insulin in the liver of animal models of obesity and diabetes, resulting in increased phosphorylation and nuclear exclusion of Foxo1, and a reduction in the Foxo1/HNF-4alpha pathway. Since nuclear localization and the association of these proteins is involved in the activation of PEPCK and G6Pase, we believe that the regulation of Foxo1 and HNF-4alpha activities are important mechanisms involved in exercise-induced improvement of glucose homeostasis in insulin resistant states.


Assuntos
Diabetes Mellitus/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Esforço Físico , Transporte Ativo do Núcleo Celular , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Proteína Forkhead Box O1 , Técnica Clamp de Glucose , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Resistência à Insulina/genética , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Camundongos , Obesidade/genética , Obesidade/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Natação
17.
J Physiol ; 587(Pt 9): 2069-76, 2009 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273580

RESUMO

PGC-1alpha expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1alpha activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1alpha and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1alpha/Foxo1 association is unknown. Here we investigate the expression of PGC-1alpha and the association of PGC-1alpha/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1alpha expression and PGC-1alpha/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia.


Assuntos
Gorduras na Dieta/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Fígado/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Obesidade/fisiopatologia , Resistência Física , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Masculino , Obesidade/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar
18.
J Physiol ; 587(Pt 10): 2341-51, 2009 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-19332486

RESUMO

Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Tecido Adiposo Branco/anatomia & histologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dieta , Ingestão de Energia/efeitos dos fármacos , Epididimo/anatomia & histologia , Epididimo/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Hipotálamo/efeitos dos fármacos , Insulina/administração & dosagem , Insulina/sangue , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Obesidade/sangue , Obesidade/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
J Cell Physiol ; 221(1): 92-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19492410

RESUMO

TRB3 (a mammalian homolog of Drosophila) is emerging as an important player in the regulation of insulin signaling. TRB3 can directly bind to Ser/Thr protein kinase Akt, the major downstream kinase of insulin signaling. Conversely, physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity; however, the molecular mechanisms by which exercise improves glucose homeostasis, particularly in the hepatic tissue, are only partially known. Here, we demonstrate that acute exercise reduces fasting glucose in two models diabetic mice. Western blot analysis showed that 8 h after a swimming protocol, TRB3 expression was reduced in the hepatic tissue from diet-induced obesity (Swiss) and leptin-deficient (ob/ob) mice, when compared with respective control groups at rest. In parallel, there was an increase in insulin responsiveness in the canonical insulin-signaling pathway in hepatic tissue from DIO and ob/ob mice after exercise. In addition, the PEPCK expression was reduced in the liver after the exercise protocol, suggesting that acute exercise diminished hepatic glucose production through insulin-signaling restoration. Thus, these results provide new insights into the mechanism by which physical activity improves glucose homeostasis in type 2 diabetes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/biossíntese , Resistência à Insulina , Fígado/metabolismo , Condicionamento Físico Animal , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta , Jejum , Glicogênio/metabolismo , Insulina/metabolismo , Fígado/enzimologia , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Obesos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
20.
Eur J Appl Physiol ; 105(6): 861-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19153761

RESUMO

The present study investigated mitochondrial adaptations and oxidative damage after 4 and 8 weeks of running training in skeletal muscle of mice. Twenty-one male mice (CF1, 30-35 g) were distributed into the following groups (n = 7): untrained (UT); trained-4 weeks (T4); trained-8 weeks (T8). Forty-eight hours after the last training session the animals were killed by decapitation and quadriceps (red portion) were removed and stored at -70 degrees C. Succinate dehydrogenase (SDH), complexes I, II, II-III and IV, lipoperoxidation (TBARS), protein carbonyls (PC) and total thiol content were measured. Results show that endurance training (8-wk) increases the SDH activity and complexes (I, II, III, IV), decreases oxidative damage (TBARS, CP) and increases total thiol content in skeletal muscle when compared to untrained animals. In conclusion, eight weeks of running training are necessary for increases in mitochondrial respiratory chain enzyme activities to occur, in association with decreased oxidative damage.


Assuntos
Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Transporte de Elétrons/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Carbonilação Proteica/fisiologia , Succinato Desidrogenase/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA