Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446003

RESUMO

Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Falência Renal Crônica , Humanos , Falência Renal Crônica/terapia , Diálise Renal , Matriz Extracelular
2.
Angiogenesis ; 25(1): 129-143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34432198

RESUMO

Vein grafting is a frequently used surgical intervention for cardiac revascularization. However, vein grafts display regions with intraplaque (IP) angiogenesis, which promotes atherogenesis and formation of unstable plaques. Graft neovessels are mainly composed of endothelial cells (ECs) that largely depend on glycolysis for migration and proliferation. In the present study, we aimed to investigate whether loss of the glycolytic flux enzyme phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) in ECs inhibits IP angiogenesis and as such prevents unstable plaque formation. To this end, apolipoprotein E deficient (ApoE-/-) mice were backcrossed to a previously generated PFKFB3fl/fl Cdh5iCre mouse strain. Animals were injected with either corn oil (ApoE-/-PFKFB3fl/fl) or tamoxifen (ApoE-/-PFKFB3ECKO), and were fed a western-type diet for 4 weeks prior to vein grafting. Hereafter, mice received a western diet for an additional 28 days and were then sacrificed for graft assessment. Size and thickness of vein graft lesions decreased by 35 and 32%, respectively, in ApoE-/-PFKFB3ECKO mice compared to controls, while stenosis diminished by 23%. Moreover, vein graft lesions in ApoE-/-PFKFB3ECKO mice showed a significant reduction in macrophage infiltration (29%), number of neovessels (62%), and hemorrhages (86%). EC-specific PFKFB3 deletion did not show obvious adverse effects or changes in general metabolism. Interestingly, RT-PCR showed an increased M2 macrophage signature in vein grafts from ApoE-/-PFKFB3ECKO mice. Altogether, EC-specific PFKFB3 gene deletion leads to a significant reduction in lesion size, IP angiogenesis, and hemorrhagic complications in vein grafts. This study demonstrates that inhibition of endothelial glycolysis is a promising therapeutic strategy to slow down plaque progression.


Assuntos
Células Endoteliais , Neovascularização Patológica , Fosfofrutoquinase-2/genética , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Deleção de Genes , Glicólise , Camundongos , Neovascularização Patológica/genética , Fosfofrutoquinase-2/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362087

RESUMO

Vein grafts (VGs) are used to bypass atherosclerotic obstructions and arteriovenous fistulas (AVFs) as vascular access for hemodialysis. Vascular remodeling governs post-interventional arterialization, but may also induce VG and AVF failure. Although the endpoint characteristics of vascular remodeling are known, the in vivo process and the role of blood flow dynamics has not been fully studied. Therefore, here we non-invasively quantify vascular remodeling and blood flow alterations over time in murine VG and AVF models. C57BL/6J (n = 7, chow diet) and atherosclerosis-prone ApoE3*Leiden (n = 7) mice underwent VG surgery. Ultrasound imaging was performed at 3, 7, 14, 21, and 28 days post-surgery. C57BL/6J mice (n = 8) received AVF surgery. Ultrasound imaging was performed at 7 and 14 days post-surgery. The luminal volume increased by 42% in the VGs of C57BL/6J and 38% in the VGs of ApoE3*Leiden mice at 28 days relative to 3 days post-surgery. Longitudinally, an 82% increase in wall volume and 76% increase in outward remodeling was found in the ApoE3*Leiden mice, with a constant wall size in C57BL/6J mice. Proximally, the pulsatility index, resistive index, and peak systolic velocity decreased longitudinally in both groups. Distally, the maximum acceleration increased with 56% in C57BL/6J VGs. Among the AVFs, 50% showed maturation after 7 days, based on a novel flow-criterium of 23 mL/min. Distinct flow patterns were observed at the anastomotic site and inflow artery of the AVFs relative to the control carotid arteries. Vascular remodeling can be quantified by ultra-high-frequency ultrasound imaging over time in complex animal models, via three-dimensional structural parameters and site-specific hemodynamic indices.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Camundongos , Animais , Derivação Arteriovenosa Cirúrgica/métodos , Remodelação Vascular , Apolipoproteína E3 , Camundongos Endogâmicos C57BL , Diálise Renal , Hemodinâmica/fisiologia , Ultrassonografia , Velocidade do Fluxo Sanguíneo
4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362449

RESUMO

Phosphorylcholine (PC) is one of the main oxLDL epitopes playing a central role in atherosclerosis, due to its atherogenic and proinflammatory effects. PC can be cleared by natural IgM antibodies and low levels of these antibodies have been associated with human vein graft (VG) failure. Although PC antibodies are recognized for their anti-inflammatory properties, their effect on intraplaque angiogenesis (IPA) and intraplaque hemorrhage (IPH)-interdependent processes contributing to plaque rupture-are unknown. We hypothesized that new IgG phosphorylcholine antibodies (PC-mAb) could decrease vulnerable lesions in murine VGs.Therefore, hypercholesterolemic male ApoE3*Leiden mice received a (donor) caval vein interposition in the carotid artery and weekly IP injections of (5 mg/kg) PCmAb (n = 11) or vehicle (n = 12) until sacrifice at day 28. We found that PCmAb significantly decreased vein graft media (13%), intima lesion (25%), and increased lumen with 32% compared to controls. PCmAb increased collagen content (18%) and decreased macrophages presence (31%). PCmAb resulted in 23% decreased CD163+ macrophages content in vein grafts whereas CD163 expression was decreased in Hb:Hp macrophages. PCmAb significantly lowered neovessel density (34%), EC proliferation and migration with/out oxLDL stimulation. Moreover, PCmAb enhanced intraplaque angiogenic vessels maturation by increasing neovessel pericyte coverage in vivo (31%). Together, this resulted in a 62% decrease in IPH. PCmAb effectively inhibits murine atherosclerotic lesion formation in vein grafts by reducing IPA and IPH via decreased neovessel density and macrophages influx and increased neovessel maturation. PC-mAb therefore holds promise as a new therapeutic approach to prevent vein graft disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Masculino , Animais , Fosforilcolina/farmacologia , Placa Aterosclerótica/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/complicações , Aterosclerose/metabolismo , Hemorragia/metabolismo , Anticorpos Monoclonais
5.
J Cell Mol Med ; 25(16): 7772-7782, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190404

RESUMO

Phosphorylcholine is a pro-inflammatory epitope exposed on apoptotic cells, and phosphorylcholine monoclonal immunoglobulin (Ig)G antibodies (PC-mAb) have anti-inflammatory properties. In this study, we hypothesize that PC-mAb treatment reduces adverse cardiac remodelling and infarct size (IS) following unreperfused transmural myocardial infarction (MI). Unreperfused MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery in hypercholesterolaemic APOE*3-Leiden mice. Three weeks following MI, cardiac magnetic resonance (CMR) imaging showed a reduced LV end-diastolic volume (EDV) by 21% and IS by 31% upon PC-mAb treatment as compared to the vehicle control group. In addition, the LV fibrous content was decreased by 27% and LV wall thickness was better preserved by 47% as determined by histological analysis. Two days following MI, CCL2 concentrations, assessed by use of ELISA, were decreased by 81% and circulating monocytes by 64% as assessed by use of FACS analysis. Additionally, local leucocyte infiltration determined by immunohistological analysis showed a 62% decrease after three weeks. In conclusion, the local and systemic inflammatory responses are limited by PC-mAb treatment resulting in restricted adverse cardiac remodelling and IS following unreperfused MI. This indicates that PC-mAb holds promise as a therapeutic agent following MI limiting adverse cardiac remodelling.


Assuntos
Anticorpos Monoclonais/farmacologia , Inflamação/tratamento farmacológico , Isquemia/complicações , Infarto do Miocárdio/prevenção & controle , Fosforilcolina/imunologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia
6.
Angiogenesis ; 24(3): 567-581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33550461

RESUMO

OBJECTIVE: Statins pleiotropically provide additional benefits in reducing atherosclerosis, but their effects on intraplaque angiogenesis (IPA) and hemorrhage (IPH) remain unclear. Therefore, we discriminated statin's lipid-lowering dependent and independent effects on IPA and IPH. APPROACH AND RESULTS: ApoE3*Leiden mice are statin-responsive due to ApoE and LDLR presence, but also allow to titrate plasma cholesterol levels by diet. Therefore, ApoE3*Leiden mice were fed a high-cholesterol-inducing-diet (HCD) with or without atorvastatin (A) or a moderate-cholesterol-inducing-diet (MCD). Mice underwent vein graft surgery to induce lesions with IPA and IPH. Cholesterol levels were significantly reduced in MCD (56%) and HCD + A (39%) compared to HCD with no significant differences between MCD and HCD + A. Both MCD and HCD + A have a similar reduction in vessel remodeling and inflammation comparing to HCD. IPA was significantly decreased by 30% in HCD + A compared to HCD or MCD. Atorvastatin treatment reduced the presence of immature vessels by 34% vs. HCD and by 25% vs. MCD, resulting in a significant reduction of IPH. Atorvastatin's anti-angiogenic capacity was further illustrated by a dose-dependent reduction of ECs proliferation and migration. Cultured mouse aortic-segments lost sprouting capacity upon atorvastatin treatment and became 30% richer in VE-Cadherin expression and pericyte coverage. Moreover, Atorvastatin inhibited ANGPT2 release and decreased VE-Cadherin(Y685)-phosphorylation in ECs. CONCLUSIONS: Atorvastatin has beneficial effects on vessel remodeling due to its lipid-lowering capacity. Atorvastatin has strong pleiotropic effects on IPA by decreasing the number of neovessels and on IPH by increasing vessel maturation. Atorvastatin improves vessel maturation by inhibiting ANGPT2 release and phospho(Y658)-mediated VE-Cadherin internalization.


Assuntos
Angiopoietina-2 , Antígenos CD , Atorvastatina/farmacologia , Caderinas , Colesterol na Dieta/efeitos adversos , Neovascularização Patológica , Placa Aterosclerótica , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Caderinas/genética , Caderinas/metabolismo , Colesterol na Dieta/farmacologia , Masculino , Camundongos , Camundongos Mutantes , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 40(2): 350-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826652

RESUMO

OBJECTIVE: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS: These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Glicocálix/metabolismo , Glicólise/fisiologia , Hialuronan Sintases/genética , Fatores de Transcrição Kruppel-Like/genética , Estresse Mecânico , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/patologia , Glicocálix/patologia , Hialuronan Sintases/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884485

RESUMO

Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp-/- and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp-/- mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp-/- mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.


Assuntos
Isquemia/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , RNA Antissenso/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Cromossomos , Membro Posterior/irrigação sanguínea , Isquemia/etiologia , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451116

RESUMO

Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste , Cirurgia Assistida por Computador/métodos , Micropartículas Derivadas de Células/metabolismo , Humanos , Leucócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Tomografia por Emissão de Pósitrons/métodos , Cirurgia Assistida por Computador/normas
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946583

RESUMO

Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-ß (TGF-ß) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Endoglina/análise , Neoplasias/diagnóstico por imagem , Animais , Doenças Cardiovasculares/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ultrassonografia/métodos
11.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670533

RESUMO

Hereditary hemorrhagic telangiectasia type 1 (HHT1) is a severe vascular disorder caused by mutations in the TGFß/BMP co-receptor endoglin. Endoglin haploinsufficiency results in vascular malformations and impaired neoangiogenesis. Furthermore, HHT1 patients display an impaired immune response. To date it is not fully understood how endoglin haploinsufficient immune cells contribute to HHT1 pathology. Therefore, we investigated the immune response during tissue repair in Eng+/- mice, a model for HHT1. Eng+/- mice exhibited prolonged infiltration of macrophages after experimentally induced myocardial infarction. Moreover, there was an increased number of inflammatory M1-like macrophages (Ly6Chigh/CD206-) at the expense of reparative M2-like macrophages (Ly6Clow/CD206+). Interestingly, HHT1 patients also showed an increased number of inflammatory macrophages. In vitro analysis revealed that TGFß-induced differentiation of Eng+/- monocytes into M2-like macrophages was blunted. Inhibiting BMP signaling by treating monocytes with LDN-193189 normalized their differentiation. Finally, LDN treatment improved heart function after MI and enhanced vascularization in both wild type and Eng+/- mice. The beneficial effect of LDN was also observed in the hind limb ischemia model. While blood flow recovery was hampered in vehicle-treated animals, LDN treatment improved tissue perfusion recovery in Eng+/- mice. In conclusion, BMPR kinase inhibition restored HHT1 macrophage imbalance in vitro and improved tissue repair after ischemic injury in Eng+/- mice.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Modelos Animais de Doenças , Endoglina/metabolismo , Infarto do Miocárdio/prevenção & controle , Pirazóis/farmacologia , Pirimidinas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Endoglina/genética , Feminino , Heterozigoto , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/imunologia , Telangiectasia Hemorrágica Hereditária/metabolismo , Cicatrização/genética
12.
J Vasc Res ; 57(6): 348-354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32610324

RESUMO

Multiple lines of evidence suggest that intraplaque (IP) neovascularization promotes atherosclerotic plaque growth, destabilization, and rupture. However, pharmacological inhibition of IP neovascularization remains largely unexplored due to the limited number of animal models that develop IP neovessels and the lack of reliable methods for visualizing IP angiogenesis. Here, we applied 3D confocal microscopy with an optimized tissue-clearing process, immunolabeling-enabled three-dimensional imaging of solvent-cleared organs, to visualize IP neovessels in apolipoprotein E-deficient (ApoE-/-) mice carrying a heterozygous mutation (C1039+/-) in the fibrillin-1 gene. Unlike regular ApoE-/- mice, this mouse model is characterized by the presence of advanced plaques with evident IP neovascularization. Plaques were stained with antibodies against endothelial marker CD31 for 3 days, followed by incubation with fluorescently labeled secondary antibodies. Subsequent tissue clearing with dichloromethane (DCM)/methanol, DCM, and dibenzyl ether allowed easy visualization and 3D reconstruction of the IP vascular network while plaque morphology remained intact.


Assuntos
Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Imageamento Tridimensional , Microscopia Confocal , Neovascularização Patológica , Placa Aterosclerótica , Animais , Biomarcadores/metabolismo , Complexo CD3/metabolismo , Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrilina-1/genética , Fibrilina-1/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Camundongos Knockout para ApoE , Mutação
13.
J Pineal Res ; 68(1): e12614, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31599473

RESUMO

Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6 hours phase advances or delays, or weekly alternating light-dark cycles (12 hours shifts), as a well-established model for shift work. We found that mice exposed to 15 weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development.


Assuntos
Aterosclerose , Ritmo Circadiano/fisiologia , Fotoperíodo , Animais , Aorta/patologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Citocinas/metabolismo , Dieta Ocidental , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos
14.
J Pathol ; 247(3): 333-346, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430573

RESUMO

Endothelial-to-mesenchymal transition (EndMT) has been unveiled as a common cause for a multitude of human pathologies, including cancer and cardiovascular disease. Vascular calcification is a risk factor for ischemic vascular disorders and slowing calcification may reduce mortality in affected patients. The absence of early biomarkers hampers the identification of patients at risk. EndMT and vascular calcification are induced upon cooperation between distinct stimuli, including inflammatory cytokines and transforming growth factor beta (TGF-ß) family members. However, how these signaling pathways interplay to promote cell differentiation and eventually vascular calcification is not well understood. Using in vitro and ex vivo analysis in animal models and patient-derived tissues, we have identified that the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) induce EndMT in human primary aortic endothelial cells, thereby sensitizing them for BMP-9-induced osteogenic differentiation. Downregulation of the BMP type II receptor BMPR2 is a key event in this process. Rather than compromising BMP canonical signal transduction, loss of BMPR2 results in decreased JNK signaling in ECs, thus enhancing BMP-9-induced mineralization. Altogether, our results point at the BMPR2-JNK signaling axis as a key pathway regulating inflammation-induced EndMT and contributing to calcification. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Calcificação Vascular/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Mediadores da Inflamação/farmacologia , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C3H , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Calcificação Vascular/patologia
15.
Proc Natl Acad Sci U S A ; 114(15): E3022-E3031, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348206

RESUMO

Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.


Assuntos
Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
16.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287463

RESUMO

Plaque angiogenesis and plaque hemorrhage are major players in the destabilization and rupture of atherosclerotic lesions. As these are dynamic processes, imaging of plaque angiogenesis, especially the integrity or leakiness of angiogenic vessels, can be an extremely useful tool in the studies on atherosclerosis pathophysiology. Visualizing plaque microvessels in 3D would enable us to study the architecture and permeability of adventitial and intimal plaque microvessels in advanced atherosclerotic lesions. We hypothesized that a comparison of the vascular permeability between healthy continuous and fenestrated as well as diseased leaky microvessels, would allow us to evaluate plaque microvessel leakiness. We developed and validated a two photon intravital microscopy (2P-IVM) method to assess the leakiness of plaque microvessels in murine atherosclerosis-prone ApoE3*Leiden vein grafts based on the quantification of fluorescent-dextrans extravasation in real-time. We describe a novel 2P-IVM set up to study vessels in the neck region of living mice. We show that microvessels in vein graft lesions are in their pathological state more permeable in comparison with healthy continuous and fenestrated microvessels. This 2P-IVM method is a promising approach to assess plaque angiogenesis and leakiness. Moreover, this method is an important advancement to validate therapeutic angiogenic interventions in preclinical atherosclerosis models.


Assuntos
Microscopia Intravital , Microvasos/metabolismo , Microvasos/patologia , Transplantes , Veias/metabolismo , Animais , Permeabilidade Capilar , Modelos Animais de Doenças , Microscopia Intravital/métodos , Camundongos , Neovascularização Fisiológica , Placa Aterosclerótica/cirurgia , Imagem com Lapso de Tempo , Veias/transplante
17.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429150

RESUMO

Myostatin is a negative regulator of muscle cell growth and proliferation. Furthermore, myostatin directly affects the expression of 14q32 microRNAs by binding the 14q32 locus. Direct inhibition of 14q32 microRNA miR-495-3p decreased postinterventional restenosis via inhibition of both vascular smooth muscle cell (VSMC) proliferation and local inflammation. Here, we aimed to investigate the effects of myostatin in a mouse model for postinterventional restenosis. In VSMCs in vitro, myostatin led to the dose-specific downregulation of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p. VSMC proliferation was inhibited, where cell migration and viability remained unaffected. In a murine postinterventional restenosis model, myostatin infusion did not decrease restenosis, neointimal area, or lumen stenosis. Myostatin inhibited expression of both proliferation marker PCNA and of 14q32 microRNAs miR-433-3p, miR-494-3p, and miR-495-3p dose-specifically in cuffed femoral arteries. However, 14q32 microRNA expression remained unaffected in macrophages and macrophage activation as well as macrophage influx into lesions were not decreased. In conclusion, myostatin did not affect postinterventional restenosis. Although myostatin inhibits 14q32 microRNA expression and proliferation in VSMCs, myostatin had no effect on macrophage activation and infiltration. Our findings underline that restenosis is driven by both VSMC proliferation and local inflammation. Targeting only one of these components is insufficient to prevent restenosis.


Assuntos
Reestenose Coronária/genética , Regulação da Expressão Gênica , Inflamação/genética , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miostatina/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromossomos de Mamíferos/genética , Artéria Femoral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629855

RESUMO

VEGFR2 and VEGF-A play a pivotal role in the process of angiogenesis. VEGFR2 activation is regulated by protein tyrosine phosphatases (PTPs), enzymes that dephosphorylate the receptor and reduce angiogenesis. We aim to study the effect of PTPs blockade using bis(maltolato)oxovanadium(IV) (BMOV) on in vivo wound healing and in vitro angiogenesis. BMOV significantly improves in vivo wound closure by 45% in C57BL/6JRj mice. We found that upon VEGFR2 phosphorylation induced by endogenously produced VEGF-A, the addition of BMOV results in increased cell migration (45%), proliferation (40%) and tube formation (27%) in HUVECs compared to control. In a mouse ex vivo, aortic ring assay BMOV increased the number of sprouts by 3 folds when compared to control. However, BMOV coadministered with exogenous VEGF-A increased ECs migration, proliferation and tube formation by only 41%, 18% and 12% respectively and aortic ring sprouting by only 1-fold. We also found that BMOV enhances VEGFR2 Y951 and p38MAPK phosphorylation, but not ERK1/2. The level of phosphorylation of these residues was the same in the groups treated with BMOV supplemented with exogenous VEGF-A and exogenous VEGF-A only. Our study demonstrates that BMOV is able to enhance wound closure in vivo. Moreover, in the presence of endogenous VEGF-A, BMOV is able to stimulate in vitro angiogenesis by increasing the phosphorylation of VEGFR2 and its downstream proangiogenic enzymes. Importantly, BMOV had a stronger proangiogenic effect compared to its effect in coadministration with exogenous VEGF-A.


Assuntos
Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pironas/farmacologia , Vanadatos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
J Cell Mol Med ; 23(6): 3888-3896, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30932349

RESUMO

OBJECTIVE: To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization. METHODS: Unilateral hind limb ischaemia was induced in Irf3-/- , Irf7-/- and C57BL/6 mice by ligation of the left common femoral artery. Post-ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation. RESULTS: Post-ischaemic blood flow recovery was decreased in Irf3-/- and Irf7-/- mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3-/- and Irf7-/- mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3-/- and Irf7-/- mice at t28. In addition, mRNA expression levels of pro-inflammatory cytokines (tnfα, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of Irf3-/- and Irf7-/- mice compared to C57BL/6 mice. CONCLUSION: Deficiency of IRF3 and IRF7 results in impaired post-ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.


Assuntos
Circulação Colateral/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Isquemia/metabolismo , Neovascularização Patológica/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Circulação Colateral/fisiologia , Membro Posterior/irrigação sanguínea , Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Isquemia/diagnóstico por imagem , Isquemia/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
FASEB J ; : fj201800437R, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29882709

RESUMO

The pathophysiology of arteriovenous fistula (AVF) maturation failure is not completely understood but impaired outward remodeling (OR) and intimal hyperplasia are thought to be contributors. This adverse vascular response after AVF surgery results from interplay between vascular smooth muscle cells (VSMCs), the extracellular matrix (ECM), and inflammatory cells. Relaxin (RLN) is a hormone that acts on the vasculature via interaction with RLN/insulin-like peptide family receptor 1 (RXFP1), resulting in vasodilatation, ECM remodeling, and decreased inflammation. In the present study, we evaluated the consequences of RXFP1 knockout ( Rxfp1-/-) on AVF maturation in a murine model of AVF failure. Rxfp1-/- mice showed a 22% decrease in vessel size at the venous outflow tract 14 d after AVF surgery. Furthermore, a 43% increase in elastin content was observed in the lesions of Rxfp1-/- mice and coincided with a 41% reduction in elastase activity. In addition, Rxfp1-/- mice displayed a 6-fold increase in CD45+ leukocytes, along with a 2-fold increase in monocyte chemoattractant protein 1 (MCP1) levels, when compared with wild-type mice. In vitro, VSMCs from Rxfp1-/- mice exhibited a synthetic phenotype, as illustrated by augmentation of collagen, fibronectin, TGF-ß, and platelet-derived growth factor mRNA. In addition, VSMCs derived from Rxfp1-/- mice showed a 5-fold increase in cell migration. Finally, RXFP1 and RLN expression levels were increased in human AVFs when compared with unoperated cephalic veins. In conclusion, RXFP1 deficiency hampers elastin degradation and results in induced vascular inflammation after AVF surgery. These processes impair OR in murine AVF, suggesting that the RLN axis could be a potential therapeutic target for promoting AVF maturation.-Bezhaeva, T., de Vries, M. R., Geelhoed, W. J., van der Veer, E. P., Versteeg, S., van Alem, C. M. A., Voorzaat, B. M., Eijkelkamp, N., van der Bogt, K. E., Agoulnik, A. I., van Zonneveld, A.-J., Quax, P. H. A., Rotmans, J. I. Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA