Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 10: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439297

RESUMO

BACKGROUND: Day/night cycles regulate the circadian clock of organisms to program daily activities. Many species of microalgae have a synchronized cell division when grown under a day/night cycle, and synchronization might influence biomass yield and composition. Therefore, the aim of this study was to study the influence of day/night cycle on biomass yield and composition of the green microalgae Neochloris oleoabundans. Hence, we compared continuous turbidostat cultures grown under continuous light with cultures grown under simulated day/night cycles. RESULTS: Under day/night cycles, cultures were synchronized as cell division was scheduled in the night, whereas under continuous light cell division occurred randomly synchronized cultures were able to use the light 10-15% more efficiently than non-synchronized cultures. Our results indicate that the efficiency of light use varies over the cell cycle and that synchronized cell division provides a fitness benefit to microalgae. Biomass composition under day/night cycles was similar to continuous light, with the exception of starch content. The starch content was higher in cultures under continuous light, most likely because the cells never had to respire starch to cover for maintenance during dark periods. Day/night cycles were provided in a 'block' (continuous light intensity during the light period) and in a 'sine' (using a sine function to simulate light intensities from sunrise to sunset). There were no differences in biomass yield or composition between these two ways of providing light (in a 'block' or in a 'sine'). CONCLUSIONS: The biomass yield and composition of N. oleoabundans were influenced by day/night cycles. These results are important to better understand the relations between research done under continuous light conditions and with day/night cycle conditions. Our findings also imply that more research should be done under day/night cycles.

2.
J Biotechnol ; 187: 25-33, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25062660

RESUMO

The circadian clock schedules processes in microalgae cells at suitable times in the day/night cycle. To gain knowledge about these biological time schedules, Neochloris oleoabundans was grown under constant light conditions and nitrogen limitation. Under these constant conditions, the only variable was the circadian clock. The results were compared to previous work done under nitrogen-replete conditions, in order to determine the effect of N-limitation on circadian rhythms in the cell cycle and biomass composition of N. oleoabundans. The circadian clock was not affected by nitrogen-limitation, and cell division was timed in the natural night, despite of constant light conditions. However, because of nitrogen-limitation, not the entire population was able to divide every day. Two subpopulations were observed, which divided alternately every other day. This caused oscillations in biomass yield and composition. Starch and total fatty acids (TFA) were accumulated during the day. Also, fatty acid composition changed during the cell cycle. Neutral lipids were built up during the day, especially in cells that were arrested in their cell cycle (G2 and G3). These findings give insight in the influence of circadian rhythms on the cell cycle and biomass composition.


Assuntos
Biomassa , Ciclo Celular/fisiologia , Clorófitas/metabolismo , Ritmo Circadiano/fisiologia , Microalgas/metabolismo , Nitrogênio/metabolismo , Clorófitas/fisiologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Microalgas/fisiologia
3.
Bioresour Technol ; 104: 565-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079686

RESUMO

The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)2= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)2from 0.007 to 0.02 bar at P(O2) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4.


Assuntos
Reatores Biológicos/microbiologia , Oxigênio/metabolismo , Fotobiorreatores/microbiologia , Volvocida/crescimento & desenvolvimento , Volvocida/efeitos da radiação , Relação Dose-Resposta à Radiação , Luz , Pressão Parcial , Doses de Radiação
4.
Bioresour Technol ; 102(8): 5083-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21324679

RESUMO

The scalability of microalgae growth systems is a primary research topic in anticipation of the commercialization of microalgae-based biofuels. To date, there is little published data on the productivity of microalgae in growth systems that are scalable to commercially viable footprints. To inform the development of more detailed assessments of industrial-scale microalgae biofuel processes, this paper presents the construction and validation of a model of microalgae biomass and lipid accumulation in an outdoor, industrial-scale photobioreactor. The model incorporates a time-resolved simulation of microalgae growth and lipid accumulation based on solar irradiation, species specific characteristics, and photobioreactor geometry. The model is validated with 9 weeks of growth data from an industrially-scaled outdoor photobioreactor. Discussion focuses on the sensitivity of the model input parameters, a comparison of predicted microalgae productivity to the literature, and an analysis of the implications of this more detailed growth model on microalgae biofuels lifecycle assessment studies.


Assuntos
Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Absorção , Biomassa , Microalgas/metabolismo , Microalgas/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Temperatura
5.
Biotechnol Prog ; 26(3): 687-96, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20175153

RESUMO

To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab-scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on-line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 micromol m(-1) s(-1)) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O(2) and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L(-1)) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing-induced light/dark fluctuations is marginal.


Assuntos
Reatores Biológicos , Chlorella/metabolismo , Análise de Variância , Biomassa , Dióxido de Carbono/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Oxigênio/metabolismo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA