Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2202912119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727967

RESUMO

VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.


Assuntos
Movimentos Oculares , Neurônios Motores , Terminações Pré-Sinápticas , Fator A de Crescimento do Endotélio Vascular , Animais , Anticorpos Neutralizantes , Axotomia , Gatos , Movimentos Oculares/efeitos dos fármacos , Movimentos Oculares/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculos Oculomotores/efeitos dos fármacos , Músculos Oculomotores/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
2.
Exp Physiol ; 109(1): 17-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36869596

RESUMO

Proprioception is the sense that lets us perceive the location, movement and action of the body parts. The proprioceptive apparatus includes specialized sense organs (proprioceptors) which are embedded in the skeletal muscles. The eyeballs are moved by six pairs of eye muscles and binocular vision depends on fine-tuned coordination of the optical axes of both eyes. Although experimental studies indicate that the brain has access to eye position information, both classical proprioceptors (muscle spindles and Golgi tendon organ) are absent in the extraocular muscles of most mammalian species. This paradox of monitoring extraocular muscle activity in the absence of typical proprioceptors seemed to be resolved when a particular nerve specialization (the palisade ending) was detected in the extraocular muscles of mammals. In fact, for decades there was consensus that palisade endings were sensory structures that provide eye position information. The sensory function was called into question when recent studies revealed the molecular phenotype and the origin of palisade endings. Today we are faced with the fact that palisade endings exhibit sensory as well as motor features. This review aims to evaluate the literature on extraocular muscle proprioceptors and palisade endings and to reconsider current knowledge of their structure and function.


Assuntos
Músculos Oculomotores , Células Receptoras Sensoriais , Animais , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia , Mecanorreceptores , Propriocepção/fisiologia , Fusos Musculares , Mamíferos
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445838

RESUMO

BDNF is a neurotrophin family member implicated in many different neuronal functions, from neuronal survival during development to synaptic plasticity associated with processes of learning and memory. Its presence in the oculomotor system has previously been demonstrated, as it regulates afferent composition of extraocular motoneurons and their firing pattern. Moreover, BDNF expression increases after extraocular motoneuron partial deafferentation, in parallel with terminal axon sprouting from the remaining axons. To elucidate whether BDNF could play an active role in this process, we performed partial deafferentation of the medial rectus motoneurons through transection of one of the two main afferents, that is, the ascending tract of Deiters, and injected BDNF into the motoneuron target muscle, the medial rectus. Furthermore, to check whether BDNF could stimulate axon sprouting without lesions, we performed the same experiment without any lesions. Axon terminal sprouting was assessed by calretinin immunostaining, which specifically labels the remaining afferent system on medial rectus motoneurons, the abducens internuclear neurons. The results presented herein show that exogenous BDNF stimulated terminal axon growth, allowing the total recovery of synaptic coverage around the motoneuron somata. Moreover, calretinin staining in the neuropil exceeded that present in the control situation. Thus, BDNF could also stimulate axonal sprouting in the neuropil of intact animals. These results point to an active role of BDNF in plastic adaptations that take place after partial deafferentation.


Assuntos
Nervo Abducente , Fator Neurotrófico Derivado do Encéfalo , Animais , Calbindina 2 , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Nervo Abducente/patologia , Nervo Abducente/fisiologia , Neurônios Motores/fisiologia , Axônios
4.
J Neurosci ; 41(47): 9782-9793, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34675089

RESUMO

Multiply-innervated muscle fibers (MIFs) are peculiar to the extraocular muscles as they are non-twitch but produce a slow build up in tension on repetitive stimulation. The motoneurons innervating MIFs establish en grappe terminals along the entire length of the fiber, instead of the typical en plaque terminals that singly-innervated muscle fibers (SIFs) motoneurons establish around the muscle belly. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. We aimed to discern the function of MIF motoneurons by recording medial rectus motoneurons of the oculomotor nucleus. Single-unit recordings in awake cats demonstrated that electrophysiologically-identified medial rectus MIF motoneurons participated in different types of eye movements, including fixations, rapid eye movements or saccades, convergences, and the slow and fast phases of the vestibulo-ocular nystagmus, the same as SIF motoneurons did. However, MIF medial rectus motoneurons presented lower firing frequencies, were recruited earlier and showed lower eye position (EP) and eye velocity (EV) sensitivities than SIF motoneurons. MIF medial rectus motoneurons were also smaller, had longer antidromic latencies and a lower synaptic coverage than SIF motoneurons. Peristimulus time histograms (PSTHs) revealed that electrical stimulation to the myotendinous junction, where palisade endings are located, did not recurrently affect the firing probability of medial rectus motoneurons. Therefore, we conclude there is no division of labor between MIF and SIF motoneurons based on the type of eye movement they subserve.SIGNIFICANCE STATEMENT In addition to the common singly-innervated muscle fiber (SIF), extraocular muscles also contain multiply-innervated muscle fibers (MIFs), which are non-twitch and slow in contraction. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. In the present work, by single-unit extracellular recordings in awake cats, we demonstrate, however, that both SIF and MIF motoneurons, electrophysiologically-identified, participate in the different types of eye movements. However, MIF motoneurons showed lower firing rates (FRs), recruitment thresholds, and eye-related sensitivities, and could thus contribute to the fine adjustment of eye movements. Electrical stimulation of the myotendinous junction activates antidromically MIF motoneurons but neither MIF nor SIF motoneurons receive a synaptic reafferentation that modifies their discharge probability.


Assuntos
Movimentos Oculares/fisiologia , Neurônios Motores/fisiologia , Músculos Oculomotores/inervação , Animais , Gatos
5.
Proc Natl Acad Sci U S A ; 116(9): 3837-3846, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30760592

RESUMO

Extraocular muscles contain two types of muscle fibers according to their innervation pattern: singly innervated muscle fibers (SIFs), similar to most skeletal muscle fibers, and multiply innervated muscle fibers (MIFs). Morphological studies have revealed that SIF and MIF motoneurons are segregated anatomically and receive different proportions of certain afferents, suggesting that while SIF motoneurons would participate in the whole repertoire of eye movements, MIF motoneurons would contribute only to slow eye movements and fixations. We have tested that proposal by performing single-unit recordings, in alert behaving cats, of electrophysiologically identified MIF and SIF motoneurons in the abducens nucleus. Our results show that both types of motoneuron discharge in relation to eye position and velocity, displaying a tonic-phasic firing pattern for different types of eye movement (saccades, vestibulo-ocular reflex, vergence) and gaze-holding. However, MIF motoneurons presented an overall reduced firing rate compared with SIF motoneurons, and had significantly lower recruitment threshold and also lower eye position and velocity sensitivities. Accordingly, MIF motoneurons could control mainly gaze in the off-direction, when less force is needed, whereas SIF motoneurons would contribute to increase muscle tension progressively toward the on-direction as more force is required. Anatomically, MIF and SIF motoneurons distributed intermingled within the abducens nucleus, with MIF motoneurons being smaller and having a lesser somatic synaptic coverage. Our data demonstrate the functional participation of both MIF and SIF motoneurons in fixations and slow and phasic eye movements, although their discharge properties indicate a functional segregation.


Assuntos
Movimentos Oculares/fisiologia , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculos Oculomotores/fisiologia , Animais , Gatos , Humanos , Tono Muscular/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Músculos Oculomotores/inervação , Movimentos Sacádicos/fisiologia
6.
J Neurosci ; 37(38): 9172-9188, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28842421

RESUMO

Medial rectus motoneurons receive two main pontine inputs: abducens internuclear neurons, whose axons course through the medial longitudinal fasciculus (MLF), and neurons in the lateral vestibular nucleus, whose axons project through the ascending tract of Deiters (ATD). Abducens internuclear neurons are responsible for conjugate gaze in the horizontal plane, whereas ATD neurons provide medial rectus motoneurons with a vestibular input comprising mainly head velocity. To reveal the relative contribution of each input to the oculomotor physiology, single-unit recordings from medial rectus motoneurons were obtained in the control situation and after selective deafferentation from cats with unilateral transection of either the MLF or the ATD. Both MLF and ATD transection produced similar short-term alterations in medial rectus motoneuron firing pattern, which were more drastic in MLF of animals. However, long-term recordings revealed important differences between the two types of lesion. Thus, while the effects of the MLF section were permanent, 2 months after ATD lesioning all motoneuronal firing parameters were similar to the control. These findings indicated a more relevant role of the MLF pathway in driving motoneuronal firing and evidenced compensatory mechanisms following the ATD lesion. Confocal immunocytochemistry revealed that MLF transection produced also a higher loss of synaptic boutons, mainly at the dendritic level. Moreover, 2 months after ATD transection, we observed an increase in synaptic coverage around motoneuron cell bodies compared with short-term data, which is indicative of a synaptogenic compensatory mechanism of the abducens internuclear pathway that could lead to the observed firing and morphological recovery.SIGNIFICANCE STATEMENT Eye movements rely on multiple neuronal circuits for appropriate performance. The abducens internuclear pathway through the medial longitudinal fascicle (MLF) and the vestibular neurons through the ascending tract of Deiters (ATD) are a dual system that supports the firing of medial rectus motoneurons. We report the effect of sectioning the MLF or the ATD pathway on the firing of medial rectus motoneurons, as well as the plastic mechanisms by which one input compensates for the lack of the other. This work shows that while the effects of MLF transection are permanent, the ATD section produces transitory effects. A mechanism based on axonal sprouting and occupancy of the vacant synaptic space due to deafferentation is the base for the mechanism of compensation on the medial rectus motoneuron.


Assuntos
Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Neurônios Motores/fisiologia , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Gatos , Denervação/métodos , Feminino , Neurônios Motores/citologia , Músculos Oculomotores/citologia
7.
Int J Mol Sci ; 17(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916956

RESUMO

Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios Motores/metabolismo , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Axotomia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Morte Celular/efeitos dos fármacos , Colina O-Acetiltransferase/biossíntese , Colina O-Acetiltransferase/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Neurônios Motores/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/farmacologia , Neurotrofina 3
8.
J Neurosci ; 34(20): 7007-17, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828653

RESUMO

Transplants of neural progenitor cells (NPCs) into the injured CNS have been proposed as a powerful tool for brain repair, but, to date, few studies on the physiological response of host neurons have been reported. Therefore, we explored the effects of NPC implants on the discharge characteristics and synaptology of axotomized abducens internuclear neurons, which mediate gaze conjugacy for horizontal eye movements. NPCs were isolated from the subventricular zone of neonatal cats and implanted at the site of transection in the medial longitudinal fascicle of adult cats. Abducens internuclear neurons of host animals showed a complete restoration of axotomy-induced alterations in eye position sensitivity, but eye velocity sensitivity was only partially regained. Analysis of the inhibitory and excitatory components of the discharge revealed a normal re-establishment of inhibitory inputs, but only partial re-establishment of excitatory inputs. Moreover, their inhibitory terminal coverage was similar to that in controls, indicating that there was ultimately no loss of inhibitory synaptic inputs. Somatic coverage by synaptophysin-positive contacts, however, showed intermediate values between control animals and animals that had undergone axotomy, likely due to partial loss of excitatory inputs. We also demonstrated that severed axons synaptically contacted NPCs, most of which were VEGF immunopositive, and that abducens internuclear neurons expressed the VEGF receptor Flk1. Together, our results suggest that VEGF neurotrophic support might underlie the increased inhibitory-to-excitatory balance observed in the postimplant cells. The noteworthy improvement of firing properties of injured neurons following NPC implants indicates that these cells might provide a promising therapeutic strategy after neuronal lesions.


Assuntos
Nervo Abducente/fisiologia , Potenciais de Ação/fisiologia , Movimentos Oculares/fisiologia , Células-Tronco Neurais/transplante , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Axotomia , Gatos , Plasticidade Neuronal/fisiologia
9.
J Neurosci ; 33(7): 2784-93, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407938

RESUMO

Palisade endings are nerve specializations found in the extraocular muscles (EOMs) of mammals, including primates. They have long been postulated to be proprioceptors. It was recently demonstrated that palisade endings are cholinergic and that in monkeys they originate from the EOM motor nuclei. Nevertheless, there is considerable difference of opinion concerning the nature of palisade ending function. Palisade endings in EOMs were examined in cats to test whether they display motor or sensory characteristics. We injected an anterograde tracer into the oculomotor or abducens nuclei and combined tracer visualization with immunohistochemistry and α-bungarotoxin staining. Employing immunohistochemistry, we performed molecular analyses of palisade endings and trigeminal ganglia to determine whether cat palisade endings are a cholinergic trigeminal projection. We confirmed that palisade endings are cholinergic and showed, for the first time, that they, like extraocular motoneurons, are also immunoreactive for calcitonin gene-related peptide. Following tracer injection into the EOM nuclei, we observed tracer-positive palisade endings that exhibited choline acetyl transferase immunoreactivity. The tracer-positive nerve fibers supplying palisade endings also established motor terminals along the muscle fibers, as demonstrated by α-bungarotoxin. Neither the trigeminal ganglion nor the ophthalmic branch of the trigeminal nerve contained cholinergic elements. This study confirms that palisade endings originate in the EOM motor nuclei and further indicates that they are extensions of the axons supplying the muscle fiber related to the palisade. The present work excludes the possibility that they receive cholinergic trigeminal projections. These findings call into doubt the proposed proprioceptive function of palisade endings.


Assuntos
Axônios/fisiologia , Músculos Oculomotores/fisiologia , Nervo Abducente/citologia , Nervo Abducente/fisiologia , Animais , Bungarotoxinas , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gatos , Colina O-Acetiltransferase/metabolismo , Imunofluorescência , Imuno-Histoquímica , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Terminações Nervosas/fisiologia , Músculos Oculomotores/inervação , Sistema Nervoso Parassimpático/fisiologia , Propriocepção/fisiologia , Nervo Trigêmeo/citologia
10.
Glia ; 62(4): 623-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481572

RESUMO

Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.


Assuntos
Lesões Encefálicas/cirurgia , Junções Comunicantes/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Neuroglia/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais , Antígenos/metabolismo , Axotomia , Conexina 43/metabolismo , Junções Comunicantes/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/ultraestrutura , Proteoglicanas/metabolismo , Ratos , Ratos Wistar
11.
Brain Struct Funct ; 229(1): 183-194, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032515

RESUMO

Medial rectus motoneurons mediate nasally directed horizontal eye movements. These motoneurons receive two major excitatory inputs, from the abducens internuclear neurons (ABD Ints) and neurons of the lateral vestibular nucleus whose axons course through the ascending tract of Deiters (ATD). In the present work, we have recorded in the alert chronic cat preparation the discharge activity of these two premotor neurons simultaneously with eye movements, to discern their relative contribution to the firing pattern of medial rectus motoneurons. ABD Int discharge was accurately correlated with eye movements, displaying high sensitivities to eye position and eye velocity. ATD neurons also discharged in relation to spontaneous and vestibular eye movements but showed significantly lower eye position and eye velocity sensitivities. Outstandingly, ATD neurons presented a significantly lower eye position threshold for recruitment compared to both ABD Ints and medial rectus motoneurons. Therefore, ATD neurons exhibited eye position and velocity signals during spontaneous and vestibular eye movements, which were of lower magnitude than those of ABD Ints, but due to their low recruitment threshold, they could play a significant role in facilitating ABD Int signal transmission onto medial rectus motoneurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Humanos , Axônios , Movimentos Oculares , Neurônios Motores/fisiologia
12.
Neural Regen Res ; 18(8): 1691-1696, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751781

RESUMO

Vascular endothelial growth factor (VEGF) was discovered by its angiogenic activity. However, during evolution, it appeared earlier as a neurotrophic factor required for the development of the nervous system in invertebrates lacking a circulatory system. We aimed at reviewing recent evidence indicating that VEGF has neuroprotective effects in neurons exposed to a variety of insults. Of particular interest is the link established between VEGF and motoneurons, especially after the design of the VEGFδ/δ mutant mice. These mice are characterized by low levels of VEGF and develop muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis. The administration of VEGF through several routes to animal models of amyotrophic lateral sclerosis delays motor impairment and motoneuron degeneration and increases life expectancy. There are new recent advances in the role of VEGF in the physiology of motoneurons. Our experimental aims use the extraocular (abducens) motoneurons lesioned by axotomy as a model for studying VEGF actions. Axotomized abducens motoneurons exhibit severe alterations in their discharge activity and a loss of synaptic boutons. The exogenous administration of VEGF to axotomized abducens motoneurons, either from the transected nerve or intraventricularly, fully restores the synaptic and discharge properties of abducens motoneurons, despite being axotomized. In addition, when an anti-VEGF neutralizing antibody is delivered from the muscle to intact, uninjured abducens motoneurons, these cells display alterations in their discharge pattern and a loss of synaptic boutons that resemble the state of axotomy. All these data indicate that VEGF is an essential neurotrophic factor for motoneurons.

13.
Brain Struct Funct ; 228(3-4): 967-984, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37005931

RESUMO

The potassium chloride cotransporter 2 (KCC2) is the main Cl- extruder in neurons. Any alteration in KCC2 levels leads to changes in Cl- homeostasis and, consequently, in the polarity and amplitude of inhibitory synaptic potentials mediated by GABA or glycine. Axotomy downregulates KCC2 in many different motoneurons and it is suspected that interruption of muscle-derived factors maintaining motoneuron KCC2 expression is in part responsible. In here, we demonstrate that KCC2 is expressed in all oculomotor nuclei of cat and rat, but while trochlear and oculomotor motoneurons downregulate KCC2 after axotomy, expression is unaltered in abducens motoneurons. Exogenous application of vascular endothelial growth factor (VEGF), a neurotrophic factor expressed in muscle, upregulated KCC2 in axotomized abducens motoneurons above control levels. In parallel, a physiological study using cats chronically implanted with electrodes for recording abducens motoneurons in awake animals, demonstrated that inhibitory inputs related to off-fixations and off-directed saccades in VEGF-treated axotomized abducens motoneurons were significantly higher than in control, but eye-related excitatory signals in the on direction were unchanged. This is the first report of lack of KCC2 regulation in a motoneuron type after injury, proposing a role for VEGF in KCC2 regulation and demonstrating the link between KCC2 and synaptic inhibition in awake, behaving animals.


Assuntos
Simportadores , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Movimentos Oculares , Neurônios Motores/fisiologia , Movimentos Sacádicos , Simportadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gatos
14.
J Neurosci ; 31(6): 2271-9, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21307263

RESUMO

Extraocular muscle tension associated with spontaneous eye movements has a pulse-slide-step profile similar to that of motoneuron firing rate. Existing models only relate motoneuron firing to eye position, velocity and acceleration. We measured and quantitatively compared lateral rectus muscle force and eye position with the firing of abducens motoneurons in the cat to determine fundamental encoding correlations. During fixations (step), muscle force increased exponentially with eccentric eye position, consistent with a model of estimate ensemble motor innervation based on neuronal sensitivities and recruitment order. Moreover, firing rate in all motoneurons tested was better related to eye position than to muscle tension during fixations. In contrast, during the postsaccadic slide phase, the time constant of firing rate decay was closely related to that of muscle force decay, suggesting that all motoneurons encode muscle tension as well. Discharge characteristics of abducens motoneurons formed overlapping clusters of phasic and tonic motoneurons, thus, tonic units recruited earlier and had a larger slide signal. We conclude that the slide signal is a discharge characteristic of the motoneuron that controls muscle tension during the postsaccadic phase and that motoneurons are specialized for both tension and position-related properties. The organization of signal content in the pool of abducens motoneurons from the very phasic to the very tonic units is possibly a result of the differential trophic background received from distinct types of muscle fibers.


Assuntos
Movimentos Oculares/fisiologia , Neurônios Motores/fisiologia , Tono Muscular/fisiologia , Músculos Oculomotores/citologia , Músculos Oculomotores/fisiologia , Nervo Abducente/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biomecânicos , Biofísica , Gatos , Análise por Conglomerados , Estimulação Elétrica/métodos , Eletromiografia/métodos , Feminino , Músculos Oculomotores/inervação , Recrutamento Neurofisiológico
15.
Adv Neurobiol ; 28: 281-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066830

RESUMO

Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity. According to their innervation pattern, extraocular muscle fibers can be classified as singly innervated muscle fiber (SIF), or the peculiar multiply innervated muscle fiber (MIF). SIF motoneurons show anatomical and physiological differences with MIF motoneurons. The latter are smaller and display lower eye position and velocity sensitivities as compared with SIF motoneurons.


Assuntos
Neurônios Motores , Músculos Oculomotores , Movimentos Oculares , Humanos , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia
16.
Neuroscientist ; : 10738584221120803, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36121037

RESUMO

Vascular endothelial growth factor (VEGF) is well known for its angiogenic activity, but recent evidence has revealed a neuroprotective action of this factor on injured or diseased neurons. In the present review, we summarize the most relevant findings that have contributed to establish a link between VEGF deficiency and neuronal degeneration. At issue, 1) mutant mice with reduced levels of VEGF show adult-onset muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis (ALS), 2) administration of VEGF to different animal models of motoneuron degeneration improves motor performance and ameliorates motoneuronal degeneration, and 3) there is an association between low plasmatic levels of VEGF and human ALS. Altogether, the results presented in this review highlight VEGF as an essential motoneuron neurotrophic factor endowed with promising therapeutic potential for the treatment of motoneuron disorders.

17.
Invest Ophthalmol Vis Sci ; 63(11): 15, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36255363

RESUMO

Purpose: To test whether visual experience and/or eye movements drive the postnatal development of palisade endings in extraocular muscles. Methods: In three newborn cats, the right eye was covered until 30 days from postnatal (P) day 7 (before opening their eyes), and in three cats both eyes were covered until 45 days, also from P7. To block eye movements, another seven cats received a retrobulbar injection of botulinum neurotoxin A (BoNT-A) into the left orbit at birth and survived for 45 days (three cats) and 95 days (four cats). The distal third of the rectus muscles containing the palisade endings was used for whole-mount preparation and triple-fluorescence labeling with anti-neurofilament along with (1) anti-synaptophysin and phalloidin or (2) anti-growth associated protein 43 (GAP43) and phalloidin. Immunolabeled specimens were analyzed in the confocal laser scanning microscope. Results: After unilateral and bilateral dark rearing, palisade endings were qualitatively and quantitatively equal to those from age-matched controls. After BoNT-A induced eye immobilization for 45 or 95 days, palisade endings were absent in the superior rectus and lateral rectus muscles and only present in the inferior rectus and medial rectus muscle. These BoNT-A-treated palisade endings were rudimentary and reduced in number, and the expression of the neuronal developmental protein GAP43 was significantly reduced. Conclusions: This study demonstrates that eye immobilization, but not visual deprivation, affects palisade ending development. Palisade endings develop in the first month of life, and the present findings indicate that, during this time window, palisade endings are prone to oculomotor perturbations.


Assuntos
Toxinas Botulínicas Tipo A , Movimentos Oculares , Terminações Nervosas/fisiologia , Faloidina/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Colina O-Acetiltransferase/metabolismo , Músculos Oculomotores/metabolismo
18.
J Neurosci ; 30(24): 8308-19, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20554882

RESUMO

Target-derived neurotrophins exert powerful synaptotrophic actions in the adult brain and are involved in the regulation of different forms of synaptic plasticity. Target disconnection produces a profound synaptic stripping due to the lack of trophic support. Consequently, target reinnervation leads to synaptic remodeling and restoration of cellular functions. Extraocular motoneurons are unique in that they normally express the TrkA neurotrophin receptor in the adult, a feature not seen in other cranial or spinal motoneurons, except after lesions such as axotomy or in neurodegenerative diseases like amyotrophic lateral sclerosis. We investigated the effects of nerve growth factor (NGF) by retrogradely delivering this neurotrophin to abducens motoneurons of adult cats. Axotomy reduced the density of somatic boutons and the overall tonic and phasic firing modulation. Treatment with NGF restored synaptic inputs and firing modulation in axotomized motoneurons. When K252a, a selective inhibitor of tyrosine kinase activity, was applied to specifically test TrkA effects, the NGF-mediated restoration of synapses and firing-related parameters was abolished. Discharge variability and recruitment threshold were, however, increased by NGF compared with control or axotomized motoneurons. Interestingly, these parameters returned to normal following application of REX, an antibody raised against neurotrophin receptor p75 (p75(NTR)). In conclusion, NGF, acting retrogradely through TrkA receptors, supports afferent boutons and regulates the burst and tonic signals correlated with eye movements. On the other hand, p75(NTR) activation regulates recruitment threshold, which impacts on firing regularity. To our knowledge, this is the first report showing powerful synaptotrophic effects of NGF on motoneurons in vivo.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Sinapses/fisiologia , Nervo Abducente/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Axotomia/métodos , Tronco Encefálico/citologia , Carbazóis/farmacologia , Gatos , Colina O-Acetiltransferase/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Movimentos Oculares/fisiologia , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos do Gene rex/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Alcaloides Indólicos/farmacologia , Neurônios Motores/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Recrutamento Neurofisiológico/efeitos dos fármacos , Recrutamento Neurofisiológico/fisiologia , Sinapses/efeitos dos fármacos , Sinaptofisina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
19.
J Neurosci ; 29(2): 575-87, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19144857

RESUMO

Neurotrophins, as target-derived factors, are essential for neuronal survival during development, but during adulthood, their scope of actions widens to become also mediators of synaptic and morphological plasticity. Target disconnection by axotomy produces an initial synaptic stripping ensued by synaptic rearrangement upon target reinnervation. Using abducens motoneurons of the oculomotor system as a model for axotomy, we report that trophic support by brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) or a mixture of both, delivered to the stump of severed axons, results in either the prevention of synaptic stripping when administered immediately after lesion or in a promotion of reinnervation of afferents to abducens motoneurons once synaptic stripping had occurred, in concert with the recovery of synaptic potentials evoked from the vestibular nerve. Synaptotrophic effects, however, were larger when both neurotrophins were applied together. The axotomy-induced reduction in firing sensitivities related to eye movements were also restored to normal values when BDNF and NT-3 were administered, but discharge characteristics recovered in a complementary manner when only one neurotrophin was used. This is the first report to show selective retrograde trophic dependence of circuit-driven firing properties in vivo indicating that NT-3 restored the phasic firing, whereas BDNF supported the tonic firing of motoneurons during eye movement performance. Therefore, our data report a link between the synaptotrophic actions of neurotrophins, retrogradely delivered, and the alterations of neuronal firing patterns during motor behaviors. These trophic actions could be responsible, in part, for synaptic rearrangements that alter circuit stability and synaptic balance during plastic events of the brain.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurotrofina 3/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Análise de Variância , Animais , Axotomia/métodos , Carbazóis/farmacologia , Gatos , Colina O-Acetiltransferase/metabolismo , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Movimentos Oculares/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Alcaloides Indólicos/farmacologia , Neurônios Motores/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Ponte/citologia , Potenciais Sinápticos/efeitos dos fármacos , Sinaptofisina/metabolismo , Fatores de Tempo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
20.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32371476

RESUMO

Vascular endothelial growth factor (VEGF) has been recently demonstrated to induce neuroprotective and synaptotrophic effects on lesioned neurons. Hitherto, the administration of VEGF in different animal models of lesion or disease has been conducted following a chronic protocol of administration. We questioned whether a single dose of VEGF, administered intraventricularly, could induce long-term neurotrophic effects on injured motoneurons. For this purpose, we performed in cats the axotomy of abducens motoneurons and the injection of VEGF into the fourth ventricle in the same surgical session and investigated the discharge characteristics of axotomized and treated motoneurons by single-unit extracellular recordings in the chronic alert preparation. We found that injured motoneurons treated with a single VEGF application discharged with normal characteristics, showing neuronal eye position (EP) and velocity sensitivities similar to control, thereby preventing the axotomy-induced alterations. These effects were present for a prolonged period of time (50 d) after VEGF administration. By confocal immunofluorescence we also showed that the synaptic stripping that ensues lesion was not present, rather motoneurons showed a normal synaptic coverage. Moreover, we demonstrated that VEGF did not lead to any angiogenic response pointing to a direct action of the factor on neurons. In summary, a single dose of VEFG administered just after motoneuron axotomy is able to prevent for a long time the axotomy-induced firing and synaptic alterations without any associated vascular sprouting. We consider that these data are of great relevance due to the potentiality of VEGF as a therapeutic agent in neuronal lesions and diseases.


Assuntos
Neurônios Motores , Fator A de Crescimento do Endotélio Vascular , Animais , Axotomia , Gatos , Injeções Intraventriculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA