Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Allergy ; 78(4): 1060-1072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36315052

RESUMO

BACKGROUND: Ligelizumab is an anti-IgE monoclonal antibody binding IgE with higher affinity than omalizumab that is under clinical investigation for several IgE-mediated diseases. We previously showed that omalizumab removes IgE bound to FcεRI on plasmacytoid dendritic cells (pDCs) and restores their ability to produce IFN-α and regulatory T cells (Tregs). The aim of this work is to investigate the capacity of ligelizumab to regulate functional properties of pDCs in comparison with omalizumab. METHODS: pDCs were isolated from atopic donors and IgE was detached from FcεRI on pDCs with designed ankyrin repeat protein (DARPin) bi53-79. pDCs were resensitized with IgE alone or in the presence of ligelizumab or omalizumab prior to IgE-FcεRI crosslinking and Toll-like receptor 9 (TLR9) stimulation. Flow cytometry, ELISA, coculture experiments and intranuclear staining were performed to determine cytokine production and Treg generation. An antigen-specific model of resensitization and IgE-crosslinking was also performed. RESULTS: The levels of serum total free IgE show a non-linear positive correlation with the frequency of IgE+ pDCs displaying IgE bound to FcεRI within the 43 individual donors included in the study. Ligelizumab displays stronger capacity than omalizumab to block the binding of free IgE to FcεRI on human pDCs, resulting in a greater restoration of TLR9-L-induced IFN-α production. Ligelizumab also restores the ability of pDCs to generate FOXP3+ Tregs as previously reported for omalizumab. CONCLUSIONS: The uncovered novel molecular mechanisms of ligelizumab to regulate functional properties of pDCs from atopic donors might have important clinical implications for anti-IgE treatments in different IgE-mediated diseases.


Assuntos
Hipersensibilidade Imediata , Omalizumab , Humanos , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina E , Omalizumab/farmacologia , Omalizumab/uso terapêutico , Receptores de IgE/metabolismo , Linfócitos T Reguladores/metabolismo , Receptor Toll-Like 9/metabolismo , Interferon-alfa/biossíntese
2.
Curr Allergy Asthma Rep ; 23(3): 141-151, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720753

RESUMO

PURPOSE OF REVIEW: Allergic diseases represent a major health problem of increasing prevalence worldwide. In allergy, dendritic cells (DCs) contribute to both the pathophysiology and the induction of healthy immune responses to the allergens. Different studies have reported that some common allergens contain glycans in their structure. C-type lectin receptors (CLRs) expressed by DCs recognize carbohydrate structures and are crucial in allergen uptake, presentation, and polarization of T cell responses. This review summarizes the recent literature regarding the role of CLRs in the regulation of type 2 immune responses to allergens. RECENT FINDINGS: In this review, we highlight the capacity of CLRs to recognize carbohydrates in common allergens triggering different signaling pathways involved in the polarization of CD4+ T cells towards specific Th2 responses. Under certain conditions, specific CLRs could also promote tolerogenic responses to allergens, which might well be exploited to develop novel therapeutic approaches of allergen-specific immunotherapy (AIT), the single treatment with potential disease-modifying capacity for allergic disease. At this regard, polymerized allergens conjugated to non-oxidized mannan (allergoid-mannan conjugated) are next-generation vaccines targeting DCs via CLRs that promote regulatory T cells, thus favoring allergen tolerance both in preclinical models and clinical trials. A better understanding of the role of CLRs in the development of allergy and in the induction of allergen tolerance might well pave the way for the design of novel strategies for allergic diseases.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Lectinas Tipo C/metabolismo , Mananas , Imunidade , Dessensibilização Imunológica , Tolerância Imunológica
3.
Front Immunol ; 14: 1147520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006243

RESUMO

Introduction: Chronic or uncontrolled activation of myeloid cells including monocytes, macrophages and dendritic cells (DCs) is a hallmark of immune-mediated inflammatory disorders. There is an urgent need for the development of novel drugs with the capacity to impair innate immune cell overactivation under inflammatory conditions. Compelling evidence pointed out cannabinoids as potential therapeutic tools with anti-inflammatory and immunomodulatory capacity. WIN55,212-2, a non-selective synthetic cannabinoid agonist, displays protective effects in several inflammatory conditions by mechanisms partially depending on the generation of tolerogenic DCs able to induce functional regulatory T cells (Tregs). However, its immunomodulatory capacity on other myeloid cells such as monocytes and macrophages remains incompletely understood. Methods: Human monocyte-derived DCs (hmoDCs) were differentiated in the absence (conventional hmoDCs) or presence of WIN55,212-2 (WIN-hmoDCs). Cells were stimulated with LPS, cocultured with naive T lymphocytes and their cytokine production and ability to induce T cell responses were analysed by ELISA or flow cytometry. To evaluate the effect of WIN55,212-2 in macrophage polarization, human and murine macrophages were activated with LPS or LPS/IFNγ, in the presence or absence of the cannabinoid. Cytokine, costimulatory molecules and inflammasome markers were assayed. Metabolic and chromatin immunoprecipitation assays were also performed. Finally, the protective capacity of WIN55,212-2 was studied in vivo in BALB/c mice after intraperitoneal injection with LPS. Results: We show for the first time that the differentiation of hmoDCs in the presence of WIN55,212-2 generates tolerogenic WIN-hmoDCs that are less responsive to LPS stimulation and able to prime Tregs. WIN55,212-2 also impairs the pro-inflammatory polarization of human macrophages by inhibiting cytokine production, inflammasome activation and rescuing macrophages from pyroptotic cell death. Mechanistically, WIN55,212-2 induced a metabolic and epigenetic shift in macrophages by decreasing LPS-induced mTORC1 signaling, commitment to glycolysis and active histone marks in pro-inflammatory cytokine promoters. We confirmed these data in ex vivo LPS-stimulated peritoneal macrophages (PMΦs), which were also supported by the in vivo anti-inflammatory capacity of WIN55,212-2 in a LPS-induced sepsis mouse model. Conclusion: Overall, we shed light into the molecular mechanisms by which cannabinoids exert anti-inflammatory properties in myeloid cells, which might well contribute to the future rational design of novel therapeutic strategies for inflammatory disorders.


Assuntos
Canabinoides , Monócitos , Humanos , Camundongos , Animais , Canabinoides/farmacologia , Lipopolissacarídeos/farmacologia , Inflamassomos/metabolismo , Macrófagos , Inflamação/metabolismo , Citocinas/metabolismo
4.
Neuropharmacology ; 189: 108543, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794243

RESUMO

Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Variação Genética/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/análogos & derivados , Hiperecplexia/genética , Mutação de Sentido Incorreto/fisiologia , Neurônios/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Variação Genética/efeitos dos fármacos , Glicina/farmacologia , Glicina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hiperecplexia/tratamento farmacológico , Hiperecplexia/metabolismo , Mutação de Sentido Incorreto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
5.
Commun Biol ; 4(1): 1197, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663888

RESUMO

The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas de Peixe-Zebra/genética , Animais , Embrião não Mamífero , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas Hedgehog , Ratos , Ratos Wistar , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA