Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(9): 942-953, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30111894

RESUMO

The sensing of microbial genetic material by leukocytes often elicits beneficial pro-inflammatory cytokines, but dysregulated responses can cause severe pathogenesis. Genome-wide association studies have linked the gene encoding phospholipase D3 (PLD3) to Alzheimer's disease and have linked PLD4 to rheumatoid arthritis and systemic sclerosis. PLD3 and PLD4 are endolysosomal proteins whose functions are obscure. Here, PLD4-deficient mice were found to have an inflammatory disease, marked by elevated levels of interferon-γ (IFN-γ) and splenomegaly. These phenotypes were traced to altered responsiveness of PLD4-deficient dendritic cells to ligands of the single-stranded DNA sensor TLR9. Macrophages from PLD3-deficient mice also had exaggerated TLR9 responses. Although PLD4 and PLD3 were presumed to be phospholipases, we found that they are 5' exonucleases, probably identical to spleen phosphodiesterase, that break down TLR9 ligands. Mice deficient in both PLD3 and PLD4 developed lethal liver inflammation in early life, which indicates that both enzymes are needed to regulate inflammatory cytokine responses via the degradation of nucleic acids.


Assuntos
Células Dendríticas/fisiologia , Endossomos/metabolismo , Exonucleases/metabolismo , Hepatite/genética , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Fosfolipase D/metabolismo , Doença de Alzheimer/genética , Animais , Artrite Reumatoide/genética , DNA de Cadeia Simples/imunologia , Exonucleases/genética , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase D/genética , Escleroderma Sistêmico/genética , Transdução de Sinais , Receptor Toll-Like 9/metabolismo
2.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34115964

RESUMO

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Mitocondrial/biossíntese , Inflamassomos/efeitos dos fármacos , Metformina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/prevenção & controle , Animais , COVID-19/metabolismo , COVID-19/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Metformina/uso terapêutico , Camundongos , Núcleosídeo-Fosfato Quinase/metabolismo , Pneumonia/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/prevenção & controle , SARS-CoV-2/patogenicidade
3.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376197

RESUMO

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Assuntos
Arenaviridae , Coriomeningite Linfocítica , Humanos , Arenaviridae/metabolismo , Linhagem Celular , Proteínas Quinases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/metabolismo , Proteínas de Transporte , Antivirais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
4.
J Virol ; 98(10): e0106924, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39303014

RESUMO

Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi.


Assuntos
Bunyaviridae , Genoma Viral , Filogenia , Animais , Bunyaviridae/genética , Bunyaviridae/classificação , RNA Viral/genética , Humanos , Evolução Molecular , Artrópodes/virologia
5.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858434

RESUMO

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Assuntos
Acetamidas , Antivirais , Isoindóis , Vírus Lassa , Fatores de Terminação de Peptídeos , Piperidonas , RNA Polimerase Dependente de RNA , Proteínas Virais , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Isoindóis/farmacologia , Isoindóis/uso terapêutico , Febre Lassa/tratamento farmacológico , Vírus Lassa/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacologia , Piperidonas/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteoma , Proteômica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
6.
Immunity ; 42(2): 379-390, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25680277

RESUMO

Understanding how viruses subvert host immunity and persist is essential for developing strategies to eliminate infection. T cell exhaustion during chronic viral infection is well described, but effects on antibody-mediated effector activity are unclear. Herein, we show that increased amounts of immune complexes generated in mice persistently infected with lymphocytic choriomeningitis virus (LCMV) suppressed multiple Fcγ-receptor (FcγR) functions. The high amounts of immune complexes suppressed antibody-mediated cell depletion, therapeutic antibody-killing of LCMV infected cells and human CD20-expressing tumors, as well as reduced immune complex-mediated cross-presentation to T cells. Suppression of FcγR activity was not due to inhibitory FcγRs or high concentrations of free antibody, and proper FcγR functions were restored when persistently infected mice specifically lacked immune complexes. Thus, we identify a mechanism of immunosuppression during viral persistence with implications for understanding effective antibody activity aimed at pathogen control.


Assuntos
Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Evasão da Resposta Imune/imunologia , Coriomeningite Linfocítica/imunologia , Receptores de IgG/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/biossíntese , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Fatores Imunológicos/farmacologia , Ativação Linfocitária/imunologia , Depleção Linfocítica , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/imunologia , Receptores de IgG/imunologia , Rituximab
7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561300

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, is one of the biggest threats to public health. However, the dynamic of SARS-CoV-2 infection remains poorly understood. Replication-competent recombinant viruses expressing reporter genes provide valuable tools to investigate viral infection. Low levels of reporter gene expressed from previous reporter-expressing recombinant (r)SARS-CoV-2 in the locus of the open reading frame (ORF)7a protein have jeopardized their use to monitor the dynamic of SARS-CoV-2 infection in vitro or in vivo. Here, we report an alternative strategy where reporter genes were placed upstream of the highly expressed viral nucleocapsid (N) gene followed by a porcine tescherovirus (PTV-1) 2A proteolytic cleavage site. The higher levels of reporter expression using this strategy resulted in efficient visualization of rSARS-CoV-2 in infected cultured cells and excised lungs or whole organism of infected K18 human angiotensin converting enzyme 2 (hACE2) transgenic mice. Importantly, real-time viral infection was readily tracked using a noninvasive in vivo imaging system and allowed us to rapidly identify antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably, these reporter-expressing rSARS-CoV-2, in which a viral gene was not deleted, not only retained wild-type (WT) virus-like pathogenicity in vivo but also exhibited high stability in vitro and in vivo, supporting their use to investigate viral infection, dissemination, pathogenesis, and therapeutic interventions for the treatment of SARS-CoV-2 in vivo.


Assuntos
COVID-19 , Regulação Viral da Expressão Gênica , Genes Reporter , SARS-CoV-2 , Proteínas Virais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/genética , Feminino , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Teschovirus/genética , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/genética
8.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112172

RESUMO

Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae.


Assuntos
Artrópodes , Vírus de RNA , Vírus , Animais , Genoma Viral , Vírus de RNA/genética , Vírus/genética , Vírus de RNA de Sentido Negativo , Replicação Viral , Vírion/genética
9.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116934

RESUMO

Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae.


Assuntos
Vírus de RNA , Vírus , Genoma Viral , Vírus/genética , Vírus de RNA/genética , Filogenia , Nucleoproteínas/genética , Replicação Viral
10.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116933

RESUMO

Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae.


Assuntos
Artrópodes , Vírus de RNA , Vírus , Animais , Genoma Viral , Vírus de RNA/genética , Vírus/genética , Vírus de RNA de Sentido Negativo , Replicação Viral , Vírion/genética
11.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38117185

RESUMO

Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae.


Assuntos
Vírus de RNA , Vírus de RNA de Sentido Negativo , Nucleoproteínas , Fases de Leitura Aberta , RNA
12.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064269

RESUMO

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Assuntos
Genoma Viral , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA de Sentido Negativo , Nucleoproteínas/genética , Replicação Viral , Vírion/genética
13.
PLoS Pathog ; 16(3): e1008352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32142546

RESUMO

Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus Lassa/imunologia , África Ocidental , Reações Cruzadas , Feminino , Humanos , Masculino , Especificidade da Espécie
14.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36437428

RESUMO

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos , Mononegavirais/genética , Filogenia
15.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669332

RESUMO

The New World mammarenavirus Tacaribe virus (TCRV) has been isolated from fruit bats, mosquitoes, and ticks, whereas all other known New World mammarenaviruses are maintained in rodents. TCRV has not been linked to human disease, but it has been shown to protect against Argentine hemorrhagic fever-like disease in marmosets infected with the New World mammarenavirus Junín virus (JUNV), indicating the potential of TCRV as a live-attenuated vaccine for the treatment of Argentine hemorrhagic fever. Implementation of TCRV as a live-attenuated vaccine or a vaccine vector would be facilitated by the establishment of reverse genetics systems for the genetic manipulation of the TCRV genome. In this study, we developed, for the first time, reverse genetics approaches for the generation of recombinant TCRV (rTCRV). We successfully rescued a wild-type (WT) rTCRV (a trisegmented form of TCRV expressing two reporter genes [r3TCRV]) and a bisegmented TCRV expressing a single reporter gene from a bicistronic viral mRNA (rTCRV/GFP). These reverse genetics approaches represent an excellent tool to investigate the biology of TCRV and to explore its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of other viral infections. Notably, we identified a 39-nucleotide (nt) deletion (Δ39) in the noncoding intergenic region (IGR) of the viral large (L) segment that is required for optimal virus multiplication. Accordingly, an rTCRV containing this 39-nt deletion in the L-IGR (rTCRV/Δ39) exhibited decreased viral fitness in cultured cells, suggesting the feasibility of using this deletion in the L-IGR as an approach to attenuate TCRV, and potentially other mammarenaviruses, for their implementation as live-attenuated vaccines or vaccine vectors.IMPORTANCE To date, no Food and Drug Administration (FDA)-approved vaccines are available to combat hemorrhagic fever caused by mammarenavirus infections in humans. Treatment of mammarenavirus infections is limited to the off-label use of ribavirin, which is partially effective and associated with significant side effects. Tacaribe virus (TCRV), the prototype member of the New World mammarenaviruses, is nonpathogenic in humans but able to provide protection against Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever, demonstrating the feasibility of using TCRV as a live-attenuated vaccine vector for the treatment of JUNV and potentially other viral infections. Here, we describe for the first time the feasibility of generating recombinant TCRV (rTCRV) using reverse genetics approaches, which paves the way to study the biology of TCRV and also its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of mammarenavirus and/or other viral infections in humans.


Assuntos
Arenaviridae/genética , Arenaviridae/imunologia , Arenavirus do Novo Mundo/genética , Genética Reversa/métodos , Animais , Anticorpos Antivirais , Arenavirus do Novo Mundo/imunologia , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Vírus de DNA/genética , Febre Hemorrágica Americana/virologia , Humanos , Vírus Junin/genética , Vírus Junin/imunologia , Recombinação Genética , Ribavirina , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/imunologia , Replicação Viral
16.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269122

RESUMO

Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity.IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/química , Febre Lassa/imunologia , Vírus Lassa/imunologia , Nucleoproteínas/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/virologia , Criança , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Haplótipos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Soros Imunes/análise , Memória Imunológica , Febre Lassa/genética , Febre Lassa/patologia , Vírus Lassa/patogenicidade , Masculino , Nigéria , Nucleoproteínas/genética , Serra Leoa , Sobreviventes , Proteínas do Envelope Viral/genética , Adulto Jovem
17.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
18.
J Immunol ; 202(9): 2737-2746, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30885957

RESUMO

Dimethyl fumarate (DMF) is a prescribed treatment for multiple sclerosis and has also been used to treat psoriasis. The electrophilicity of DMF suggests that its immunosuppressive activity is related to the covalent modification of cysteine residues in the human proteome. Nonetheless, our understanding of the proteins modified by DMF in human immune cells and the functional consequences of these reactions remains incomplete. In this study, we report that DMF inhibits human plasmacytoid dendritic cell function through a mechanism of action that is independent of the major electrophile sensor NRF2. Using chemical proteomics, we instead identify cysteine 13 of the innate immune kinase IRAK4 as a principal cellular target of DMF. We show that DMF blocks IRAK4-MyD88 interactions and IRAK4-mediated cytokine production in a cysteine 13-dependent manner. Our studies thus identify a proteomic hotspot for DMF action that constitutes a druggable protein-protein interface crucial for initiating innate immune responses.


Assuntos
Células Dendríticas/imunologia , Fumarato de Dimetilo/farmacologia , Imunidade Inata/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/imunologia , Complexos Multiproteicos/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Plasmócitos/imunologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Citocinas/imunologia , Feminino , Humanos , Pessoa de Meia-Idade
19.
Proc Natl Acad Sci U S A ; 115(32): E7578-E7586, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038008

RESUMO

The recent Ebola epidemic exemplified the importance of understanding and controlling emerging infections. Despite the importance of T cells in clearing virus during acute infection, little is known about Ebola-specific CD8+ T cell responses. We investigated immune responses of individuals infected with Ebola virus (EBOV) during the 2013-2016 West Africa epidemic in Sierra Leone, where the majority of the >28,000 EBOV disease (EVD) cases occurred. We examined T cell memory responses to seven of the eight Ebola proteins (GP, sGP, NP, VP24, VP30, VP35, and VP40) and associated HLA expression in survivors. Of the 30 subjects included in our analysis, CD8+ T cells from 26 survivors responded to at least one EBOV antigen. A minority, 10 of 26 responders (38%), made CD8+ T cell responses to the viral GP or sGP. In contrast, 25 of the 26 responders (96%) made response to viral NP, 77% to VP24 (20 of 26), 69% to VP40 (18 of 26), 42% (11 of 26) to VP35, with no response to VP30. Individuals making CD8+ T cells to EBOV VP24, VP35, and VP40 also made CD8+ T cells to NP, but rarely to GP. We identified 34 CD8+ T cell epitopes for Ebola. Our data indicate the immunodominance of the EBOV NP-specific T cell response and suggest that its inclusion in a vaccine along with the EBOV GP would best mimic survivor responses and help boost cell-mediated immunity during vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Ebolavirus/imunologia , Epidemias , Antígenos HLA/imunologia , Doença pelo Vírus Ebola/imunologia , Adolescente , Adulto , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/sangue , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Masculino , Nucleoproteínas/imunologia , Serra Leoa , Sobreviventes , Vacinação/métodos , Proteínas Virais/imunologia , Adulto Jovem
20.
PLoS Pathog ; 14(7): e1007125, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001425

RESUMO

Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.


Assuntos
Infecções por Arenaviridae/metabolismo , RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune/imunologia , Replicação Viral/fisiologia , Infecções por Arenaviridae/imunologia , Arenavirus , Linhagem Celular , RNA Helicases DEAD-box/imunologia , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA