Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971141

RESUMO

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Assuntos
Metagenômica , Resiliência Psicológica , Humanos , Animais , Recém-Nascido , Evolução Biológica , Genômica , Ruminantes/genética , Variação Genética/genética
2.
Environ Microbiol ; 22(8): 3112-3125, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32363711

RESUMO

Intestinal microbial communities from 362 anadromous Arctic char (Salvelinus alpinus) from the high Arctic Kitikmeot region, Nunavut, Canada, were characterized using high-throughput 16S rRNA gene sequencing. The resulting bacterial communities were compared across four seasonal habitats that correspond to different stages of annual migration. Arctic char intestinal communities differed by sampling site, salinity and stages of freshwater residence. Although microbiota from fish sampled in brackish water were broadly consistent with taxa seen in other anadromous salmonids, they were enriched with putative psychrophiles, including the nonluminous gut symbiont Photobacterium iliopiscarium that was detected in >90% of intestinal samples from these waters. Microbiota from freshwater-associated fish were less consistent with results reported for other salmonids, and highly variable, possibly reflecting winter fasting behaviour of these char. We identified microbiota links to age for those fish sampled during the autumn upriver migration, but little impact of the intestinal content and water microbiota on the intestinal community. The strongest driver of intestinal community composition was seasonal habitat, and this finding combined with identification of psychrophiles suggested that water temperature and migratory behaviour are key to understanding the relationship between Arctic char and their symbionts.


Assuntos
Ecossistema , Microbioma Gastrointestinal/genética , Photobacterium/isolamento & purificação , Truta/microbiologia , Animais , Regiões Árticas , Canadá , Água Doce/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Photobacterium/genética , RNA Ribossômico 16S/genética , Estações do Ano , Truta/genética
3.
Anaerobe ; 57: 35-38, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30880150

RESUMO

Clostridium (Clostridioides) difficile has been identified in humans and a wide range of animal species, but there has been little study of remote animal populations with limited human contact. The objective of this study was to determine the prevalence and types of C. difficile in wild and captive polar bears (Ursus maritimus). Fecal samples were collected from two populations of wild polar bears in Nunavut Canada; M'Clintock Channel and Hudson Strait (Davis Strait or Foxe Basin), as well as from a facility (PBJ) in Churchill, Manitoba that temporarily houses nuisance polar bears and from captive bears in a zoological park. Enrichment culture was performed and isolates were characterized by ribotyping and toxinotyping. Clostridium difficile was isolated from 24/143 (16.8%) of samples; 18/120 (15%) wild bear samples, 4/7 (57%) from the PBJ and 2/16 (13%) samples from three zoo bears. The prevalence of C. difficile was significantly higher in bears that were housed at the PBJ vs wild bears (P = 0.0042), but there was no difference between wild bears from M'Clintock Channel (14/100, 14%) and those from Hudson Strait (4/20, 20%) (P = 0.50). Fourteen of the 24 (58%) isolates were toxigenic; 13/18 (72%) wild bear isolates, 0/4 PBJ isolate and 1/2 zoo isolates. Four toxigenic ribotypes were identified, with one that possessed tcdB and cdtA predominating. None of the toxigenic isolates were ribotypes that have been identified previously by the authors. There was no overlap in toxigenic ribotypes between the different populations. Clostridium difficile was not uncommonly identified in polar bears, with differences in type distribution amongst the different regions. The presence of strains that have not been identified in humans or domestic animals suggests that polar bears may be a natural reservoir of unique strains of this important bacterium.


Assuntos
Derrame de Bactérias , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Ursidae/microbiologia , ADP Ribose Transferases/genética , Animais , Regiões Árticas/epidemiologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/classificação , Clostridioides difficile/genética , Fezes/microbiologia , Doenças dos Peixes , Manitoba/epidemiologia , Nunavut/epidemiologia , Prevalência , Ribotipagem
4.
J Hered ; 109(5): 553-565, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29684146

RESUMO

The Sumatran rhinoceros (Dicerorhinus sumatrensis), once widespread across Southeast Asia, now consists of as few as 30 individuals within Sumatra and Borneo. To aid in conservation planning, we sequenced 218 bp of control region mitochondrial (mt) DNA, identifying 17 distinct mitochondrial haplotypes across modern (N = 13) and museum (N = 26) samples. Museum specimens from Laos and Myanmar had divergent mtDNA, consistent with the placement of western mainland rhinos into the distinct subspecies D. s. lasiotis (presumed extinct). Haplotypes from Bornean rhinos were highly diverse, but dissimilar from those of other regions, supporting the distinctiveness of the subspecies D. s. harrissoni. Rhinos from Sumatra and Peninsular Malaysia shared mtDNA haplotypes, consistent with their traditional placement into a single subspecies D. s sumatrensis. Modern samples of D. s. sumatrensis were genotyped at 18 microsatellite loci. Rhinos within Sumatra formed 2 sub-populations, likely separated by the Barisan Mountains, though with only modest genetic differentiation between them. There are so few remaining Sumatran rhinoceros that separate management strategies for subspecies or subpopulations may not be viable, while each surviving rhino pedigree is likely to retain alleles found in no other individuals. Given the low population size and low reproductive potential of Sumatran rhinos, rapid genetic erosion is inevitable, though an under-appreciated concern is the potential for fixation of harmful genetic variants. Both concerns underscore 2 overriding priorities for the species: 1) translocation of wild rhinos to ex situ facilities, and 2) collection and storage of gametes and cell lines from every surviving captive and wild individual.


Assuntos
Variação Genética , Perissodáctilos/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Feminino , Haplótipos , Indonésia , Malásia , Masculino , Filogeografia
5.
PLoS One ; 19(6): e0305398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917117

RESUMO

The Arctic faces increasing exposure to environmental chemicals such as metals, posing health risks to humans and wildlife. Biomonitoring of polar bears (Ursus maritimus) can be used to quantify chemicals in the environment and in traditional foods consumed by the Inuit. However, typically, these samples are collected through invasive or terminal methods. The biomonitoring of feces could be a useful alternative to the current metal monitoring method within the Arctic. Here, we aim to 1) quantify the relationship between concentrations of metals in the feces and tissues (muscle, liver, and fat) of polar bears using predictive modeling, 2) develop an easy-to-use conversion tool for use in community-based monitoring programs to non-invasively estimate contaminant concentrations in polar bears tissues and 3) demonstrate the application of these models by examining potential exposure risk for humans from consumption of polar bear muscle. Fecal, muscle, liver, and fat samples were harvested from 49 polar bears through a community-based monitoring program. The samples were analyzed for 32 metals. Exploratory analysis indicated that mean metal concentrations generally did not vary by age or sex, and many of the metals measured in feces were positively correlated with the internal tissue concentration. We developed predictive linear regression models between internal (muscle, liver, fat) and external (feces) metal concentrations and further explored the mercury and methylmercury relationships for utility risk screening. Using the cross-validated regression coefficients, we developed a conversion tool that contributes to the One Health approach by understanding the interrelated health of humans, wildlife, and the environment in the Arctic. The findings support using feces as a biomonitoring tool for assessing contaminants in polar bears. Further research is needed to validate the developed models for other regions in the Arctic and assess the impact of environmental weathering on fecal metal concentrations.


Assuntos
Fezes , Ursidae , Fezes/química , Animais , Feminino , Masculino , Regiões Árticas , Metais/análise , Monitoramento Biológico/métodos , Contaminação de Alimentos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Fígado/química , Fígado/metabolismo
6.
Sci Rep ; 14(1): 12027, 2024 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797747

RESUMO

Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.


Assuntos
Ursidae , Zoonoses , Ursidae/microbiologia , Ursidae/parasitologia , Animais , Regiões Árticas , Zoonoses/parasitologia , Zoonoses/microbiologia , Zoonoses/epidemiologia , Canadá/epidemiologia , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Trichinella/isolamento & purificação , Trichinella/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Francisella tularensis/isolamento & purificação , Francisella tularensis/genética , Feminino , Masculino
7.
J Hered ; 102(5): 610-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21775678

RESUMO

A more complete description of African elephant phylogeography would require a method that distinguishes forest and savanna elephants using DNA from low-quality samples. Although mitochondrial DNA is often the marker of choice for species identification, the unusual cytonuclear patterns in African elephants make nuclear markers more reliable. We therefore designed and utilized genetic markers for short nuclear DNA regions that contain fixed nucleotide differences between forest and savanna elephants. We used M13 forward and reverse sequences to increase the total length of PCR amplicons and to improve the quality of sequences for the target DNA. We successfully sequenced fragments of nuclear genes from dung samples of known savanna and forest elephants in the Democratic Republic of Congo, Ethiopia, and Namibia. Elephants at previously unexamined locations were found to have nucleotide character states consistent with their status as savanna or forest elephants. Using these and results from previous studies, we estimated that the short-amplicon nuclear markers could distinguish forest from savanna African elephants with more than 99% accuracy. Nuclear genotyping of museum, dung, or ivory samples will provide better-informed conservation management of Africa's elephants.


Assuntos
Núcleo Celular/genética , DNA/química , Elefantes/genética , Animais , Sequência de Bases , Congo , Elefantes/classificação , Etiópia , Genes Ligados ao Cromossomo X , Variação Genética , Genótipo , Masculino , Namíbia , Especificidade da Espécie
8.
mSystems ; 6(2)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850039

RESUMO

Host-adapted microorganisms are generally assumed to have evolved from free-living, environmental microorganisms, as examples of the reverse process are rare. In the phylum Gammaproteobacteria, family Moraxellaceae, the genus Psychrobacter includes strains from a broad ecological distribution including animal bodies as well as sea ice and other nonhost environments. To elucidate the relationship between these ecological niches and Psychrobacter's evolutionary history, we performed tandem genomic analyses with phenotyping of 85 Psychrobacter accessions. Phylogenomic analysis of the family Moraxellaceae reveals that basal members of the Psychrobacter clade are Moraxella spp., a group of often-pathogenic organisms. Psychrobacter exhibited two broad growth patterns in our phenotypic screen: one group that we called the "flexible ecotype" (FE) had the ability to grow between 4 and 37°C, and the other, which we called the "restricted ecotype" (RE), could grow between 4 and 25°C. The FE group includes phylogenetically basal strains, and FE strains exhibit increased transposon copy numbers, smaller genomes, and a higher likelihood to be bile salt resistant. The RE group contains only phylogenetically derived strains and has increased proportions of lipid metabolism and biofilm formation genes, functions that are adaptive to cold stress. In a 16S rRNA gene survey of polar bear fecal samples, we detect both FE and RE strains, but in in vivo colonizations of gnotobiotic mice, only FE strains persist. Our results indicate the ability to grow at 37°C, seemingly necessary for mammalian gut colonization, is an ancestral trait for Psychrobacter, which likely evolved from a pathobiont.IMPORTANCE Host-associated microbes are generally assumed to have evolved from free-living ones. The evolutionary transition of microbes in the opposite direction, from host associated toward free living, has been predicted based on phylogenetic data but not studied in depth. Here, we provide evidence that the genus Psychrobacter, particularly well known for inhabiting low-temperature, high-salt environments such as sea ice, permafrost soils, and frozen foodstuffs, has evolved from a mammalian-associated ancestor. We show that some Psychrobacter strains retain seemingly ancestral genomic and phenotypic traits that correspond with host association while others have diverged to psychrotrophic or psychrophilic lifestyles.

9.
BMC Res Notes ; 14(1): 119, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771210

RESUMO

OBJECTIVE: The Sumatran rhinoceros is critically endangered, with fewer than 100 individuals surviving across its current range. Accurate census estimates of the remaining populations are essential for development and implementation of conservation plans. In order to enable molecular censusing, we here develop microsatellite markers with amplicon sizes of short length, appropriate for non-invasive fecal sampling. RESULTS: Due to limited sample quantity and potential lack of genome-wide diversity, Illumina sequence reads were generated from two Sumatran rhinoceros samples. Genomic screening identified reads with short tandem repeats and loci that were polymorphic within the dataset. Twenty-nine novel polymorphic microsatellite markers were characterized (A = 2.4; HO = 0.30). These were sufficient to distinguish among individuals (PID < 0.0001), and to distinguish among siblings (PID(sib) < 0.0001). Among rhinos in Indonesia, almost all markers were established as polymorphic and effective for genotyping DNA from fecal samples. Notably, the markers amplified and displayed microsatellite polymorphisms using DNA extracted from 11 fecal samples collected non-invasively from wild Sumatran rhinoceros. These microsatellite markers provide an important resource for a census and genetic studies of wild Sumatran rhinos.


Assuntos
Repetições de Microssatélites , Perissodáctilos , Animais , Genoma , Genômica , Indonésia , Repetições de Microssatélites/genética , Perissodáctilos/genética
10.
Foods ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828902

RESUMO

As mercury emissions continue and climate-mediated permafrost thaw increases the burden of this contaminant in northern waters, Inuit from a Northwest passage community in the Canadian Arctic Archipelago pressed for an assessment of their subsistence catches. Sea-run salmonids (n = 537) comprising Arctic char (Salvelinus alpinus), lake trout (S. namaycush), lake whitefish (Coregonus clupeaformis), and cisco (C. autumnalis, C. sardinella) were analyzed for muscle mercury. Methylmercury is a neurotoxin and bioaccumulated with fish age, but other factors including selenium and other elements, diet and trophic level as assessed by stable isotopes of nitrogen (δ15N) and carbon (δ13C), as well as growth rate, condition, and geographic origin, also contributed depending on the species, even though all the fish shared a similar anadromous or sea-run life history. Although mean mercury concentrations for most of the species were ~0.09 µg·g-1 wet weight (ww), below the levels described in several jurisdictions for subsistence fisheries (0.2 µg·g-1 ww), 70% of lake trout were above this guideline (0.35 µg·g-1 ww), and 19% exceeded the 2.5-fold higher levels for commercial sale. We thus urge the development of consumption advisories for lake trout for the protection of pregnant women and young children and that additionally, periodic community-based monitoring be initiated.

11.
Ecology ; 91(7): 2003-12, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20715623

RESUMO

We used a field experiment, population modeling, and an analysis of 30 years of data from walleye (Sander vitreus; a freshwater fish) in Lake Erie to show that maternal influences on offspring survival can affect population dynamics. We first demonstrate experimentally that the survival of juvenile walleye increases with egg size (and, to a lesser degree, female energy reserves). Because egg size in this species tends to increase with maternal age, we then model these maternal influences on offspring survival as a function of maternal age to show that adult age structure can affect the maximum rate at which a population can produce new adults. Consistent with this hypothesis, we present empirical evidence that the maximum reproductive rate of an exploited population of walleye was approximately twice as high when older females were abundant as compared to when they were relatively scarce. Taken together, these results indicate that age- or size-based maternal influences on offspring survival can be an important mechanism driving population dynamics and that exploited populations could benefit from management strategies that protect, rather than target, reproductively valuable individuals.


Assuntos
Água Doce , Perciformes/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Reprodução , Razão de Masculinidade
12.
PeerJ ; 8: e8884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292653

RESUMO

DNA extracted from fecal samples contains DNA from the focal species, food, bacteria and pathogens. Most DNA quantification methods measure total DNA and cannot differentiate among sources. Despite the desirability of noninvasive fecal sampling for studying wildlife populations, low amounts of focal species DNA make it difficult to use for next-generation sequencing (NGS), where accurate DNA quantification is critical for normalization. Two factors are required prior to using fecal samples in NGS libraries: (1) an accurate quantification method for the amount of target DNA and (2) a determination of the relative amount of target DNA needed for successful single nucleotide polymorphism genotyping assays. Here, we address these needs by developing primers to amplify a 101 bp region of the nuclear F2 gene and a quantitative PCR (qPCR) assay that allows the accurate quantification of the amount of polar bear (Ursus maritimus) DNA in fecal extracts. We test the assay on pure polar bear DNA extracted from muscle tissue and find a high correlation between fluorometric and qPCR quantifications. The qPCR assay was also successfully used to quantify the amount of DNA derived from polar bears in fecal extractions. Orthologs of the F2 gene have been identified across vertebrates; thus, similar qPCR assays could be developed for other species to enable noninvasive studies.

13.
Evol Appl ; 13(4): 699-714, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211061

RESUMO

Improving our sparse knowledge of the mating and reproductive behaviour of white rhinoceros (Ceratotherium simum Burchell, 1817) is essential for the effective conservation of this iconic species. By combining morphological, physiological and habitat data with paternity assignments of 104 known mother-offspring pairs collected over a period of 13 years, we provide the most comprehensive analysis of the mating system in this species. We show that while the overall mating system was promiscuous, and both males and females produced more offspring when mating with several partners, half of all females with multiple offspring were monogamous. Additionally, we find that mating and reproductive success varied significantly among territorial males in two independent sets of males. In females, however, variation in the mating and the reproductive success was not larger than expected by random demographic fluctuations. Horn size, testosterone metabolite concentration, territory size, habitat openness and the volume of preferred food within the territory did not seem to influence male mating or reproductive success. Moreover, there was no sign of inbreeding avoidance: females tended to mate more frequently with closely related males, and one daughter produced a progeny with her father. The lack of inbreeding avoidance, in combination with the skew in male reproductive success, the partial monogamy in females and the territorial-based mating system, jeopardizes the already low genetic variation in the species. Considering that the majority of populations are restricted to fenced reserves and private farms, we recommend taking preventive measures that aim to reduce inbreeding in white rhinoceros. A video abstract can be viewed here.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30863748

RESUMO

Northern populations of Arctic char (Salvelinus alpinus) can be anadromous, migrating annually from the ocean to freshwater lakes and rivers in order to escape sub-zero temperatures. Such seasonal behavior demands that these fish and their associated microbiomes adapt to changes in salinity, temperature, and other environmental challenges. We characterized the microbial community composition of anadromous S. alpinus, netted by Inuit fishermen at freshwater and seawater fishing sites in the high Arctic, both under ice and in open water. Bacterial profiles were generated by DNA extraction and high-throughput sequencing of PCR-amplified 16S ribosomal RNA genes. Results showed that microbial communities on the skin and intestine of Arctic char were statistically different when sampled from freshwater or saline water sites. This association was tested using hierarchical Ward's linkage clustering, showing eight distinct clusters in each of the skin and intestinal microbiomes, with the clusters reflecting sampling location between fresh and saline environments, confirming a salinity-linked turnover. This analysis also provided evidence for a core composition of skin and intestinal bacteria, with the phyla Proteobacteria, Firmicutes, and Cyanobacteria presenting as major phyla within the skin-associated microbiomes. The intestine-associated microbiome was characterized by unidentified genera from families Fusobacteriaceae, Comamonadaceae, Pseudomonadaceae, and Vibrionaceae. The salinity-linked turnover was further tested through ordinations that showed samples grouping based on environment for both skin- and intestine-associated microbiomes. This finding implies that core microbiomes between fresh and saline conditions could be used to assist in regulating optimal fish health in aquaculture practices. Furthermore, identified taxa from known psychrophiles and with nitrogen cycling properties suggest that there is additional potential for biotechnological applications for fish farm and waste management practices.

15.
Curr Biol ; 28(24): 4022-4028.e5, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30528581

RESUMO

The muskox (Ovibos moschatus) is the largest terrestrial herbivore in the Arctic and plays a vital role in the tundra ecosystem [1-4]. Its range, abundance, and genetic diversity have declined dramatically over the past 30,000 years [5]. Two subspecies are recognized, but little is known about the genetic structure and how this relates to the species history. One unresolved question is how and when the species dispersed into its present range, notably the present strongholds in the Canadian archipelago and Greenland. We used genotyping by sequencing (GBS) data from 116 muskox individuals and genotype likelihood-based methods to infer the genetic diversity and distribution of genetic variation in the species. We identified a basal split separating the two recognized subspecies, in agreement with isolation of the muskox into several refugia in the Nearctic around 21,000 years ago [6], near the last glacial maximum (LGM). In addition, we found evidence of strong, successive founder effects inflicting a progressive loss of genetic diversity as the muskox colonized the insular High Arctic from an unknown Nearctic origin. These have resulted in exceptionally low genetic diversity in the Greenlandic populations, as well as extremely high genetic differentiation among regional populations. Our results highlight the need for further investigations of genetic erosion in Nearctic terrestrial mammals, of which several show similar colonization histories in the High Artic.


Assuntos
Distribuição Animal , Variação Genética , Ruminantes/genética , Animais , Regiões Árticas , Groenlândia , Filogeografia
16.
Ecol Evol ; 6(17): 6189-201, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27648236

RESUMO

Locally isolated populations in marginal habitats may be genetically distinctive and of heightened conservation concern. Elephants inhabiting the Namib Desert have been reported to show distinctive behavioral and phenotypic adaptations in that severely arid environment. The genetic distinctiveness of Namibian desert elephants relative to other African savanna elephant (Loxodonta africana) populations has not been established. To investigate the genetic structure of elephants in Namibia, we determined the mitochondrial (mt) DNA control region sequences and genotyped 17 microsatellite loci in desert elephants (n = 8) from the Hoanib River catchment and the Hoarusib River catchment. We compared these to the genotypes of elephants (n = 77) from other localities in Namibia. The mtDNA haplotype sequences and frequencies among desert elephants were similar to those of elephants in Etosha National Park, the Huab River catchment, the Ugab River catchment, and central Kunene, although the geographically distant Caprivi Strip had different mtDNA haplotypes. Likewise, analysis of the microsatellite genotypes of desert-dwelling elephants revealed that they were not genetically distinctive from Etosha elephants, and there was no evidence for isolation by distance across the Etosha region. These results, and a review of the historical record, suggest that a high learning capacity and long-distance migrations allowed Namibian elephants to regularly shift their ranges to survive in the face of high variability in climate and in hunting pressure.

17.
Ecol Evol ; 3(9): 3152-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24102001

RESUMO

As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (F ST = 0.01) and mitochondrial (ΦST = 0.47; F ST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species' range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history.

18.
Mol Ecol ; 16(2): 327-43, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17217348

RESUMO

Peregrine falcon populations underwent devastating declines in the mid-20th century due to the bioaccumulation of organochlorine contaminants, becoming essentially extirpated east of the Great Plains and significantly reduced elsewhere in North America. Extensive re-introduction programs and restrictions on pesticide use in Canada and the United States have returned many populations to predecline sizes. A proper population genetic appraisal of the consequences of this decline requires an appropriate context defined by (i) meaningful demographic entities; and (ii) suitable reference populations. Here we explore the validity of currently recognized subspecies designations using data from the mitochondrial control region and 11 polymorphic microsatellite loci taken from 184 contemporary individuals from across the breeding range, and compare patterns of population genetic structure with historical patterns inferred from 95 museum specimens. Of the three North American subspecies, the west coast marine subspecies Falco peregrinus pealei is well differentiated genetically in both time periods using nuclear loci. In contrast, the partitioning of continental Falco peregrinus anatum and arctic Falco peregrinus tundrius subspecies is not substantiated, as individuals from these subspecies are historically indistinguishable genetically. Bayesian clustering analyses demonstrate that contemporary genetic differentiation between these two subspecies is mainly due to changes within F. p. anatum (specifically the southern F. p. anatum populations). Despite expectations and a variety of tests, no genetic bottleneck signature is found in the identified populations; in fact, many contemporary indices of diversity are higher than historical values. These results are rationalized by the promptness of the recovery and the possible introduction of new genetic material.


Assuntos
DDT/toxicidade , Falconiformes/classificação , Falconiformes/genética , Variação Genética/efeitos dos fármacos , Genética Populacional , Praguicidas/toxicidade , Animais , Sequência de Bases , Teorema de Bayes , Canadá , Análise por Conglomerados , Conservação dos Recursos Naturais , Primers do DNA , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Dinâmica Populacional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA