Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 364(16): 1513-22, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428760

RESUMO

BACKGROUND: Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchenne's muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051. METHODS: We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.5, 2.0, 4.0, and 6.0 mg per kilogram of body weight) given to 3 patients. Changes in RNA splicing and protein levels in the tibialis anterior muscle were assessed at two time points. All patients subsequently entered a 12-week open-label extension phase, during which they all received PRO051 at a dose of 6.0 mg per kilogram per week. Safety, pharmacokinetics, serum creatine kinase levels, and muscle strength and function were assessed. RESULTS: The most common adverse events were irritation at the administration site and, during the extension phase, mild and variable proteinuria and increased urinary α(1)-microglobulin levels; there were no serious adverse events. The mean terminal half-life of PRO051 in the circulation was 29 days. PRO051 induced detectable, specific exon-51 skipping at doses of 2.0 mg or more per kilogram. New dystrophin expression was observed between approximately 60% and 100% of muscle fibers in 10 of the 12 patients, as measured on post-treatment biopsy, which increased in a dose-dependent manner to up to 15.6% of the expression in healthy muscle. After the 12-week extension phase, there was a mean (±SD) improvement of 35.2±28.7 m (from the baseline of 384±121 m) on the 6-minute walk test. CONCLUSIONS: Systemically administered PRO051 showed dose-dependent molecular efficacy in patients with Duchenne's muscular dystrophy, with a modest improvement in the 6-minute walk test after 12 weeks of extended treatment. (Funded by Prosensa Therapeutics; Netherlands National Trial Register number, NTR1241.).


Assuntos
Processamento Alternativo , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Adolescente , Criança , Pré-Escolar , Creatina Quinase/urina , Relação Dose-Resposta a Droga , Distrofina/genética , Distrofina/metabolismo , Teste de Esforço , Éxons , Humanos , Injeções Subcutâneas , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Mutação , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos/sangue , RNA/análise
2.
Nucleic Acid Ther ; 33(3): 193-208, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37036788

RESUMO

In the last two decades, antisense oligonucleotides (AONs) that induce corrective exon skipping have matured as promising therapies aimed at tackling the dystrophin deficiency that underlies the severe and progressive muscle fiber degeneration in Duchenne muscular dystrophy (DMD) patients. Pioneering first generation exon 51 skipping AONs like drisapersen and eteplirsen have more recently been followed up by AONs for exons 53 and 45, with, to date, a total of four exon skipping AON drugs having reached (conditional) regulatory US Food and Drug Administration (FDA) approval for DMD. Nonetheless, considering the limited efficacy of these drugs, there is room for improvement. The aim of this study was to develop more efficient [2'-O-methyl-modified phosphorothioate (2'OMePS) RNA] AONs for DMD exon 51 skipping by implementing precision chemistry as well as identifying a more potent target binding site. More than a hundred AONs were screened in muscle cell cultures, followed by a selective comparison in the hDMD and hDMDdel52/mdx mouse models. Incorporation of 5-methylcytosine and position-specific locked nucleic acids in AONs targeting the drisapersen/eteplirsen binding site resulted in 15-fold higher exon 51 skipping levels compared to drisapersen in hDMDdel52/mdx mice. However, with similarly modified AONs targeting an alternative site in exon 51, 65-fold higher skipping levels were obtained, restoring dystrophin up to 30% of healthy control. Targeting both sites in exon 51 with a single AON further increased exon skipping (100-fold over drisapersen) and dystrophin (up to 40%) levels. These dystrophin levels allowed for normalization of creatine kinase (CK) and lactate dehydrogenase (LDH) levels, and improved motor function in hDMDdel52/mdx mice. As no major safety observation was obtained, the improved therapeutic index of these next generation AONs is encouraging for further (pre)clinical development.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Camundongos Endogâmicos mdx , Terapia Genética/métodos , Éxons/genética
3.
J Pharmacol Exp Ther ; 342(1): 119-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22490379

RESUMO

Microtubule-destabilizing agents, such as vinca alkaloids (VAs), are part of the treatment currently applied in patients with high-risk neuroblastoma (NB). However, the development of drug resistance and toxicity make NB difficult to treat with these drugs. In this study we explore the combination of VAs (vincristine or vinblastine) with knockdown of the microtubule-associated proteins encoded by the doublecortin-like kinase (DCLK) gene by using short interference RNA (siRNA). We examined the effect of VAs and DCLK knockdown on the microtubule network by immunohistochemistry. We performed dose-response studies on cell viability and proliferation. By combining VA with DCLK knockdown we observed a strong reduction in the EC(50) to induce cell death: up to 7.3-fold reduction of vincristine and 21.1-fold reduction of vinblastine. Using time-lapse imaging of phosphatidylserine translocation and a terminal deoxynucleotidyl transferase dUTP nick-end labeling-based assay, we found a significant increase of apoptosis by the combined treatment. Induction of caspase-3 activity, as detected via cleavage of N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, showed a 3.3- to 12.0-fold increase in the combined treatment. We detected significant increases in caspase-8 activity as well. Moreover, the multidrug dose effect calculated by using the median effect method showed a strong synergistic inhibition of proliferation and induction of apoptosis at most of the combined concentrations of siRNAs and VAs. Together, our data demonstrate that the silencing of DCLK sensitizes NB cells to VAs, resulting in a synergetic apoptotic effect.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Alcaloides de Vinca/farmacologia , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinases Semelhantes a Duplacortina , Sinergismo Farmacológico , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Vimblastina/farmacologia , Vincristina/farmacologia
4.
Blood ; 113(19): 4548-55, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19258592

RESUMO

Patients with Mendelian susceptibility to mycobacterial disease have severe, recurrent life-threatening infections with otherwise poorly pathogenic mycobacteria and salmonellae. The extreme susceptibility is the result of genetic defects in the interleukin-12/interferon-gamma (IL-12/IFN-gamma) pathway. The infections are difficult to treat, and therapeutic options are limited. We explored the feasibility of antisense-mediated exon skipping as therapy for Mendelian susceptibility to mycobacterial disease with cells from a complete IL-12Rbeta1(-/-) patient. Expression constructs were first studied to determine whether IL12RB1 lacking exon 2 encodes a functional protein. The IL-12Rbeta1 expression construct lacking exon 2 was expressed on T cells. On IL-12 or IL-23 stimulation, this construct phosphorylated similar amounts of STAT1, STAT3, and STAT4 and induced similar amounts of IFN-gamma compared with a normal IL-12Rbeta1 construct. Antisense oligonucleotides (AONs) directed at exon 2 resulted in transcripts lacking exon 2 in both controls' and patients' T cells. In IL-12Rbeta1(-/-) cells, skipping of exon 2 led to expression of IL-12Rbeta1 on the cell surface and responsiveness to IL-12. We showed that IL12RB1 lacking exon 2 encodes a functional IL-12Rbeta1. We demonstrated that T cells can be highly efficiently transduced with AONs and are amenable to antisense-mediated exon skipping. Furthermore, we showed that exon skipping (partly) corrects the IL-12Rbeta1 deficiency in patients' cells.


Assuntos
Éxons/genética , Monócitos/metabolismo , Oligonucleotídeos Antissenso/genética , Receptores de Interleucina-12/genética , Linfócitos T/metabolismo , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/metabolismo , Monócitos/citologia , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Receptores de Interleucina-12/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Mol Ther ; 18(6): 1210-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20407428

RESUMO

Antisense oligonucleotides (AONs) are being developed as RNA therapeutic molecules for Duchenne muscular dystrophy. For oligonucleotides with the 2'-O-methyl-phosphorothioate (2OMePS) RNA chemistry, proof of concept has been obtained in patient-specific muscle cell cultures, the mouse and dog disease models, and recently by local administration in Duchenne patients. To further explore the pharmacokinetic (PK)/pharmacodynamic (PD) properties of this chemical class of oligonucleotides, we performed a series of preclinical studies in mice. The results demonstrate that the levels of oligonucleotides in dystrophin-deficient muscle fibers are much higher than in healthy fibers, leading to higher exon-skipping levels. Oligonucleotide levels and half-life differed for specific muscle groups, with heart muscle showing the lowest levels but longest half-life (approximately 46 days). Intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) delivery methods were directly compared. For each method, exon-skipping and novel dystrophin expression were observed in all muscles, including arrector pili smooth muscle in skin biopsies. After i.v. administration, the oligonucleotide peak levels in plasma, liver, and kidney were higher than after s.c. or i.p. injections. However, as the bioavailability was similar, and the levels of oligonucleotide, exon-skipping, and dystrophin steadily accumulated overtime after s.c. administration, we selected this patient-convenient delivery method for future clinical study protocols.


Assuntos
Oligonucleotídeos Fosforotioatos/farmacologia , RNA Antissenso/farmacologia , Animais , Western Blotting , Modelos Animais de Doenças , Distrofina/administração & dosagem , Imunofluorescência , Camundongos , Camundongos Endogâmicos mdx , Oligonucleotídeos Fosforotioatos/farmacocinética , RNA Antissenso/farmacocinética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
N Engl J Med ; 357(26): 2677-86, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18160687

RESUMO

BACKGROUND: Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open reading frame of the DMD gene and thus to restore dystrophin expression in vitro and in animal models in vivo. We explored the safety, adverse-event profile, and local dystrophin-restoring effect of a single, intramuscular dose of an antisense oligonucleotide, PRO051, in patients with this disease. METHODS: Four patients, who were selected on the basis of their mutational status, muscle condition, and positive exon-skipping response to PRO051 in vitro, received a dose of 0.8 mg of PRO051 injected into the tibialis anterior muscle. A biopsy was performed 28 days later. Safety measures, composition of mRNA, and dystrophin expression were assessed. RESULTS: PRO051 injection was not associated with clinically apparent adverse events. Each patient showed specific skipping of exon 51 and sarcolemmal dystrophin in 64 to 97% of myofibers. The amount of dystrophin in total protein extracts ranged from 3 to 12% of that found in the control specimen and from 17 to 35% of that of the control specimen in the quantitative ratio of dystrophin to laminin alpha2. CONCLUSIONS: Intramuscular injection of antisense oligonucleotide PRO051 induced dystrophin synthesis in four patients with Duchenne's muscular dystrophy who had suitable mutations, suggesting that further studies might be feasible.


Assuntos
Distrofina/biossíntese , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Adolescente , Criança , Desenho de Fármacos , Distrofina/análise , Distrofina/genética , Éxons , Humanos , Injeções Intramusculares , Masculino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos Antissenso/efeitos adversos , Splicing de RNA , RNA Mensageiro/análise , Deleção de Sequência , Transcrição Gênica/efeitos dos fármacos
7.
Mol Ther ; 17(3): 548-53, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18813282

RESUMO

Antisense oligonucleotides (AONs) can interfere with mRNA processing through RNase H-mediated degradation, translational arrest, or modulation of splicing. The antisense approach relies on AONs to efficiently bind to target sequences and depends on AON length, sequence content, secondary structure, thermodynamic properties, and target accessibility. We here performed a retrospective analysis of a series of 156 AONs (104 effective, 52 ineffective) previously designed and evaluated for splice modulation of the dystrophin transcript. This showed that the guanine-cytosine content and the binding energies of AON-target and AON-AON complexes were significantly higher for effective AONs. Effective AONs were also located significantly closer to the acceptor splice site (SS). All analyzed AONs are exon-internal and may act through steric hindrance of Ser-Arg-rich (SR) proteins to exonic splicing enhancer (ESE) sites. Indeed, effective AONs were significantly enriched for ESEs predicted by ESE software programs, except for predicted binding sites of SR protein Tra2beta, which were significantly enriched in ineffective AONs. These findings compile guidelines for development of AONs and provide more insight into the mechanism of antisense-mediated exon skipping. On the basis of only four parameters, we could correctly classify 79% of all AONs as effective or ineffective, suggesting these parameters can be used to more optimally design splice-modulating AONs.


Assuntos
Oligonucleotídeos Antissenso/genética , Splicing de RNA/genética , Sequência de Bases , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/classificação , Termodinâmica
8.
PLoS One ; 15(12): e0244215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362201

RESUMO

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests. To address this, we previously generated the hDMDdel52/mdx mouse model using transcription activator like effector nuclease (TALEN) technology. This model contains mutated murine and human DMD genes, and therefore lacks mouse and human dystrophin resulting in a dystrophic phenotype. It allows preclinical evaluation of AONs inducing the skipping of human DMD exons 51 and 53 and resulting in restoration of dystrophin synthesis. Here, we have further characterized this model genetically and functionally. We discovered that the hDMD and hDMDdel52 transgene is present twice per locus, in a tail-to-tail-orientation. Long-read sequencing revealed a partial deletion of exon 52 (first 25 bp), and a 2.3 kb inversion in intron 51 in both copies. These new findings on the genomic make-up of the hDMD and hDMDdel52 transgene do not affect exon 51 and/or 53 skipping, but do underline the need for extensive genetic analysis of mice generated with genome editing techniques to elucidate additional genetic changes that might have occurred. The hDMDdel52/mdx mice were also evaluated functionally using kinematic gait analysis. This revealed a clear and highly significant difference in overall gait between hDMDdel52/mdx mice and C57BL6/J controls. The motor deficit detected in the model confirms its suitability for preclinical testing of exon skipping AONs for human DMD at both the functional and molecular level.


Assuntos
Modelos Animais de Doenças , Distrofina/genética , Deleção de Genes , Distrofia Muscular de Duchenne/genética , Fenótipo , Transgenes , Animais , Fenômenos Biomecânicos , Distrofina/metabolismo , Éxons , Marcha , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia
9.
Nucleic Acid Ther ; 30(1): 50-65, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821107

RESUMO

Duchenne muscular dystrophy (DMD) is a severe childhood muscle disease primarily caused by the lack of functional dystrophin at the muscle fiber membranes. Multiple therapeutic approaches are currently in (pre)clinical development, aimed at restoring expression of (truncated) dystrophin. Key questions in this phase relate to route of drug administration, dose regimen, and levels of dystrophin required to improve muscle function. A series of studies applying antisense oligonucleotides (AONs) in the mdx mouse model for DMD has been reported over the last two decades, claiming a variable range of exon skipping and increased dystrophin levels correlated to some functional improvement. The aim of this study was to compare the efficacy of subcutaneous (SC) versus intravenous (IV) dosing routes of an mdx-specific AON at both the molecular and functional level, using state-of-the-art quantitative technologies, including digital droplet polymerase chain reaction, capillary Western immunoassay, magnetic resonance imaging, and automated kinematic analysis. The majority of all readouts we quantified, both molecular and functional, showed that IV dosing of the AON had a more pronounced beneficial effect than SC dosing in mdx mice. Last, but not least, the more quantitative molecular and functional data obtained in this study suggest that low levels of dystrophin protein of at least 2.5% of wild type may already have a beneficial effect on muscle leakiness and may improve motor performance of mdx mice.


Assuntos
Éxons/efeitos dos fármacos , Terapia Genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/farmacologia , Animais , Modelos Animais de Doenças , Éxons/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/genética
10.
Hum Mutat ; 30(3): 293-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19156838

RESUMO

Antisense-mediated exon skipping aiming for reading frame restoration is currently a promising therapeutic application for Duchenne muscular dystrophy (DMD). This approach is mutation specific, but as the majority of DMD patients have deletions that cluster in hotspot regions, the skipping of a small number of exons is applicable to relatively large numbers of patients. To assess the actual applicability of the exon skipping approach, we here determined for deletions, duplications and point mutations reported in the Leiden DMD mutation database, which exon(s) should be skipped to restore the open reading frame. In theory, single and double exon skipping would be applicable to 79% of deletions, 91% of small mutations, and 73% of duplications, amounting to 83% of all DMD mutations. Exon 51 skipping, which is being tested in clinical trials, would be applicable to the largest group (13%) of all DMD patients. Further research is needed to determine the functionality of different in-frame dystrophins and a number of hurdles has to be overcome before this approach can be applied clinically.


Assuntos
Distrofina/genética , Éxons/genética , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Processamento Alternativo , Humanos , Modelos Genéticos , Distrofia Muscular de Duchenne/terapia , Mutação , Fases de Leitura Aberta/genética
11.
J Gene Med ; 11(3): 257-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19140108

RESUMO

BACKGROUND: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs. These compounds were never directly compared. METHODS: mdx and humanized (h)DMD mice were injected intramuscularly and intravenously with short versus long 2OMePS and PMO for mouse exon 23 and human exons 44, 45, 46 and 51. RESULTS: Intramuscular injection showed that increasing the length of 2OMePS AONs enhanced skipping efficiencies of human exon 45, but decreased efficiency for mouse exon 23. Although PMO induced more mouse exon 23 skipping, PMO and 2OMePS were more comparable for human exons. After intravenous administration, exon skipping and novel protein was shown in the heart with both chemistries. Furthermore, PMO showed lower intramuscular concentrations with higher exon 23 skipping levels compared to 2OMePS, which may be due to sequestration in the extracellular matrix. Finally, two mismatches rendered 2OMePS but not PMO AONs nearly ineffective. CONCLUSIONS: The results obtained in the present study indicate that increasing AON length improves skipping efficiency in some but not all cases. It is feasible to induce exon skipping and dystrophin restoration in the heart after injection of 2OMePS and unconjugated PMO. Furthermore, differences in efficiency between PMO and 2OMePS appear to be sequence and not chemistry dependent. Finally, the results indicate that PMOs may be less sequence specific than 2OMePS.


Assuntos
Éxons/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Distrofia Muscular de Duchenne , Oligonucleotídeos Antissenso , Oligonucleotídeos Fosforotioatos , Animais , Sequência de Bases , Humanos , Camundongos , Camundongos Endogâmicos mdx , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Miocárdio/citologia , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/administração & dosagem , Oligonucleotídeos Fosforotioatos/genética
12.
Nucleic Acid Ther ; 29(6): 305-322, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31429628

RESUMO

Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.


Assuntos
Terapia Genética/tendências , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Distrofina/genética , Éxons/efeitos dos fármacos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Fosforotioatos/farmacocinética , Oligonucleotídeos Fosforotioatos/uso terapêutico , Splicing de RNA/efeitos dos fármacos
13.
Mol Ther Nucleic Acids ; 17: 601-614, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31394429

RESUMO

Spinocerebellar ataxia type 3 (SCA3) and type 1 (SCA1) are dominantly inherited neurodegenerative disorders that are currently incurable. Both diseases are caused by a CAG-repeat expansion in exon 10 of the Ataxin-3 and exon 8 of the Ataxin-1 gene, respectively, encoding an elongated polyglutamine tract that confers toxic properties to the resulting proteins. We have previously shown lowering of the pathogenic polyglutamine protein in Huntington's disease mouse models using (CUG)7, a CAG repeat-targeting antisense oligonucleotide. Here we evaluated the therapeutic capacity of (CUG)7 for SCA3 and SCA1, in vitro in patient-derived cell lines and in vivo in representative mouse models. Repeated intracerebroventricular (CUG)7 administration resulted in a significant reduction of mutant Ataxin-3 and Ataxin-1 proteins throughout the brain of SCA3 and SCA1 mouse models, respectively. Furthermore, in both a SCA3 patient cell line and the MJD84.2 mouse model, (CUG)7 induced formation of a truncated Ataxin-3 protein species lacking the polyglutamine stretch, likely arising from (CUG)7-mediated exon 10 skipping. In contrast, skipping of exon 8 of Ataxin-1 did not significantly contribute to the Ataxin-1 protein reduction observed in (CUG)7-treated SCA1154Q/2Q mice. These findings support the therapeutic potential of a single CAG repeat-targeting AON for the treatment of multiple polyglutamine disorders.

14.
J Neuromuscul Dis ; 6(1): 147-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30614809

RESUMO

Representatives of academia, patient organisations, industry and the United States Food and Drug Administration attended a workshop on dystrophin quantification methodology. The aims of the workshop were to provide an overview of methods used to quantify dystrophin levels in human skeletal muscle and their applicability to clinical trial samples, outline the gaps with regards to validating the methods for robust clinical applications prior to regulatory agency review, and to align future efforts towards further optimizing these methods. The workshop facilitated a constructive but also critical discussion on the potential and limitations of techniques currently used in the field of translational research (western blot and immunofluorescence analysis) and emerging techniques (mass spectrometry and capillary western immunoassay). Notably, all participants reported variation in dystrophin levels between muscle biopsies from different healthy individuals and agreed on the need for a common reference sample.


Assuntos
Técnicas de Laboratório Clínico , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Animais , Técnicas de Laboratório Clínico/métodos , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo
15.
BMC Med Genet ; 9: 105, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19046429

RESUMO

BACKGROUND: The specific skipping of an exon, induced by antisense oligonucleotides (AON) during splicing, has shown to be a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach is mutation dependent. The skipping of an entire stretch of exons (e.g. exons 45 to 55) has recently been suggested as an approach applicable to larger groups of patients. However, this multiexon skipping approach is technically challenging. The levels of intended multiexon skips are typically low and highly variable, and may be dependent on the order of intron removal. We hypothesized that the splicing order might favor the induction of multiexon 45-55 skipping. METHODS: We here tested the feasibility of inducing multiexon 45-55 in control and patient muscle cell cultures using various AON cocktails. RESULTS: In all experiments, the exon 45-55 skip frequencies were minimal and comparable to those observed in untreated cells. CONCLUSION: We conclude that current state of the art does not sufficiently support clinical development of multiexon skipping for DMD.


Assuntos
Éxons , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , Terapia Genética , Humanos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Mioblastos Esqueléticos/patologia , Fases de Leitura Aberta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência
16.
Curr Opin Mol Ther ; 10(2): 140-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18386226

RESUMO

Antisense-mediated exon skipping is an approach that uses antisense oligonucleotides (AONs) to modulate splicing by hiding specific sites essential for exon inclusion from the splicing machinery. AONs that block aberrant splice sites can restore normal splicing, whereas AONs targeting alternative splice sites can switch splicing patterns from detrimental to beneficial isoforms or produce non-functional mRNAs that lead to gene knockdown. Furthermore, AONs have also been used to restore a disrupted reading frame, thereby generating semi-functional proteins instead of non-functional proteins. Proof-of-concept has been obtained for each of the above AON applications in vitro and for some applications in vivo. Antisense-mediated reading frame restoration is the most promising therapy for Duchenne muscular dystrophy. Data from a first clinical trial are encouraging and additional trials are ongoing or are expected to be initiated soon.


Assuntos
Éxons , Oligonucleotídeos Antissenso/farmacologia , Processamento Alternativo , Ensaios Clínicos como Assunto , Vetores Genéticos , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico
17.
PLoS One ; 13(4): e0195850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641567

RESUMO

Duchenne muscular dystrophy (DMD) is a neuromuscular disease characterized by progressive weakness of the skeletal and cardiac muscles. This X-linked disorder is caused by open reading frame disrupting mutations in the DMD gene, resulting in strong reduction or complete absence of dystrophin protein. In order to use dystrophin as a supportive or even surrogate biomarker in clinical studies on investigational drugs aiming at correcting the primary cause of the disease, the ability to reliably quantify dystrophin expression in muscle biopsies of DMD patients pre- and post-treatment is essential. Here we demonstrate the application of the ProteinSimple capillary immunoassay (Wes) method, a gel- and blot-free method requiring less sample, antibody and time to run than conventional Western blot assay. We optimized dystrophin quantification by Wes using 2 different antibodies and found it to be highly sensitive, reproducible and quantitative over a large dynamic range. Using a healthy control muscle sample as a reference and α-actinin as a protein loading/muscle content control, a panel of skeletal muscle samples consisting of 31 healthy controls, 25 Becker Muscle dystrophy (BMD) and 17 DMD samples was subjected to Wes analysis. In healthy controls dystrophin levels varied 3 to 5-fold between the highest and lowest muscle samples, with the reference sample representing the average of all 31 samples. In BMD muscle samples dystrophin levels ranged from 10% to 90%, with an average of 33% of the healthy muscle average, while for the DMD samples the average dystrophin level was 1.3%, ranging from 0.7% to 7% of the healthy muscle average. In conclusion, Wes is a suitable, efficient and reliable method for quantification of dystrophin expression as a biomarker in DMD clinical drug development.


Assuntos
Biomarcadores/metabolismo , Western Blotting/métodos , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/metabolismo , Projetos Piloto , Adulto Jovem
19.
BMC Med Genet ; 8: 43, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17612397

RESUMO

BACKGROUND: Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. METHODS: Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. RESULTS: For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62), by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. CONCLUSION: The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.


Assuntos
Éxons , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Células Cultivadas , Distrofina/genética , Duplicação Gênica , Marcação de Genes , Humanos , Fibras Musculares Esqueléticas , Distrofia Muscular de Duchenne/terapia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência
20.
PLoS One ; 12(2): e0171127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182673

RESUMO

The aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington's disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15-60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice. This correction at the molecular level resulted in an improvement of performance in multiple motor tasks, increased whole brain and cortical volume, reduced levels of the gliosis marker myo-inositol, increased levels of the neuronal integrity marker N-aceyl aspartate and increased mRNA levels of the striatal marker Darpp-32. These neuroanatomical and neurochemical changes, together with the improved motor performance, suggest that treatment with (CUG)7 ameliorates basal ganglia dysfunction. The HTT-lowering was confirmed by an independent study in Q175 mice using a similar (CUG)7 AON dosing regimen, further demonstrating a lasting reduction of mutant HTT protein in striatum, hippocampus and cortex for up to 18 weeks post last infusion along with an increase in motor activity. Based on these encouraging results, (CUG)7 may thus offer an interesting alternative HTT-lowering strategy for HD.


Assuntos
Terapia Genética , Proteína Huntingtina/genética , Doença de Huntington/terapia , RNA Antissenso/genética , Expansão das Repetições de Trinucleotídeos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Gliose , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA