Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2114739119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302892

RESUMO

In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet­associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Humanos , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo
2.
FASEB J ; 35(2): e21266, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484195

RESUMO

Tissue-resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti-inflammatory and tissue-reparative phenotype in macrophages. As NE has a well-established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow-derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2-adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride-laden macrophages. We demonstrate that these responses are mediated by a B2AR activation-dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.


Assuntos
Agonistas Adrenérgicos/farmacologia , Macrófagos/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Leucócitos/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transcriptoma
3.
J Biol Chem ; 295(51): 17535-17548, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453996

RESUMO

The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Obesidade/patologia , Proteína Desacopladora 2/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/veterinária , Dieta Hiperlipídica , Glicólise , Resistência à Insulina , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/veterinária , Ácido Palmítico/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Desacopladora 2/genética
4.
J Lipid Res ; 60(10): 1741-1754, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409739

RESUMO

Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4-/- mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4-/- mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4-/- mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.


Assuntos
Adipócitos/metabolismo , Proteína 4 Semelhante a Angiopoietina/deficiência , Proteína 4 Semelhante a Angiopoietina/genética , Técnicas de Inativação de Genes , Macrófagos/metabolismo , Animais , Respiração Celular , Ascite Quilosa/genética , Ascite Quilosa/patologia , Éxons/genética , Regulação da Expressão Gênica , Lipase Lipoproteica/metabolismo , Linfadenopatia/genética , Linfadenopatia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue
5.
Cell Rep Methods ; 2(4): 100192, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35497494

RESUMO

Macrophages are dynamic immune cells that can adopt several activation states. Fundamental to these functional activation states is the regulation of cellular metabolic processes. Especially in mice, metabolic alterations underlying pro-inflammatory or homeostatic phenotypes have been assessed using various techniques. However, researchers new to the field may encounter ambiguity in choosing which combination of techniques is best suited to profile immunometabolism. To address this need, we have developed a toolbox to assess cellular metabolism in a semi-high-throughput 96-well-plate-based format. Application of the toolbox to activated mouse and human macrophages enables fast metabolic pre-screening and robust measurement of extracellular fluxes, mitochondrial mass and membrane potential, and glucose and lipid uptake. Moreover, we propose an application of SCENITH technology for ex vivo metabolic profiling. We validate established activation-induced metabolic rewiring in mouse macrophages and report new insights into human macrophage metabolism. By thoroughly discussing each technique, we hope to guide readers with practical workflows for investigating immunometabolism.


Assuntos
Glicólise , Macrófagos , Humanos , Animais , Camundongos , Homeostase , Mitocôndrias/metabolismo , Ativação de Macrófagos
6.
Immunometabolism (Cobham) ; 4(4): e00008, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337734

RESUMO

An increase in glucose uptake driving aerobic glycolysis is a robust hallmark of immune cell activation. The glycolytic response supports functional alterations of the innate immune cells including the production and release of cytokines. Large inter-individual differences in the magnitude of this cytokine response are known to exist. In addition, the presence of disease is known to impact on immune cell function. Whether variation in metabolic responses of immune cells exist between individuals during health or disease is currently unknown. Here, we explore inter-individual differences in the glycolytic rate of immune cells using lactate production as readout upon activation using a variety of different stimuli. Glycolytic responses are subsequently associated to functional immune cell responses in healthy humans. In addition, we determined the glycolytic rate of immune cells and its association with immune function using patients diagnosed with diabetes mellitus. Based on the relative increase in lactate production after activation, distinct clusters of low, intermediate, and high responders could be identified, illustrating the existence of variation in glycolytic responses in healthy subjects. Interestingly, the production of cytokines mirrored these high-, intermediate-, and low-lactate patterns after pathogenic stimulation. In patients with diabetes mellitus, a reduced correlation was found between lactate and cytokine production, specifically for IL-6. Furthermore, based on the relative increase in lactate production, variability in the glycolytic response was reduced compared to healthy subjects. In conclusion, our results show a specific association between the glycolytic rate and function in human immune cells after stimulation with different pathogens. In addition to demonstrating the existence of glycolytic variability and specificity depending on the type of stimulus, the association between glycolysis and function in innate immune cells is altered during the presence of diabetes.

7.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166427, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526742

RESUMO

Macrophages undergo extensive metabolic rewiring upon activation which assist the cell in roles beyond energy production and synthesis of anabolic building blocks. So-called immunometabolites that accumulate upon immune activation can serve as co-factors for enzymes and can act as signaling molecules to modulate cellular processes. As such, the Krebs-cycle-associated metabolites succinate, itaconate and alpha-ketoglutarate (αKG) have emerged as key regulators of macrophage function. Here, we describe that 2-hydroxyglutarate (2HG), which is structurally similar to αKG and exists as two enantiomers, accumulates during later stages of LPS-induced inflammatory responses in mouse and human macrophages. D-2HG was the most abundant enantiomer in macrophages and its LPS-induced accumulation followed the induction of Hydroxyacid-Oxoacid Transhydrogenase (HOT). HOT interconverts αKG and gamma-hydroxybutyrate into D-2HG and succinic semialdehyde, and we here identified this enzyme as being immune-responsive and regulated during the course of macrophage activation. The buildup of D-2HG may be further explained by reduced expression of D-2HG Dehydrogenase (D2HGDH), which converts D-2HG back into αKG, and showed inverse kinetics with HOT and D-2HG levels. We tested the immunomodulatory effects of D-2HG during LPS-induced inflammatory responses by transcriptomic analyses and functional profiling of D-2HG-pre-treated macrophages in vitro and mice in vivo. Together, these data suggest a role for D-2HG in the negative feedback regulation of inflammatory signaling during late-stage LPS-responses in vitro and as a regulator of local and systemic inflammatory responses in vivo. Finally, we show that D-2HG likely exerts distinct anti-inflammatory effects, which are in part independent of αKG-dependent dioxygenase inhibition. Together, this study reveals an immunometabolic circuit resulting in the accumulation of the immunomodulatory metabolite D-2HG that can inhibit inflammatory macrophage responses.


Assuntos
Anti-Inflamatórios , Glutaratos , Macrófagos , Receptor 4 Toll-Like , Animais , Anti-Inflamatórios/farmacologia , Glutaratos/farmacologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos
8.
Trends Cancer ; 7(8): 666-667, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183306

RESUMO

Isocitrate dehydrogenase (IDH) mutations produce high levels of the 'oncometabolite' R-2-hydroxyglutarate (R-2-HG) and play a key role in the initiation and progression of glioma tumors in the brain. A recent study in Nature Cancer by Friedrich et al. describes how IDH-mutant-derived R-2-HG elicits an immunosuppressive phenotype in glioma-associated macrophages. As such, the authors uncovered a new vulnerability that can be exploited for therapy.


Assuntos
Neoplasias Encefálicas , Isocitrato Desidrogenase , Glutaratos , Humanos , Macrófagos
9.
Diabetes ; 69(12): 2735-2746, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978233

RESUMO

Diabetes is associated with increased cardiovascular risk and higher occurrence of infections. These complications suggest altered responses of the innate immune system. Recent studies have shown that energy metabolism of monocytes is crucial in determining their functionality. Here we investigate whether monocyte metabolism and function are changed in patients with diabetes and aim to identify diabetes-associated factors driving these alterations. Patients with type 1 diabetes (T1D) (n = 41) and healthy age-, sex-, and BMI-matched control subjects (n = 20) were recruited. Monocytes were isolated from peripheral blood to determine immune functionality, metabolic responses, and transcriptome profiles. Upon ex vivo stimulation with Toll-like receptor (TLR) 4 or TLR-2 agonists, monocytes of patients with T1D secreted lower levels of various cytokines and showed lower glycolytic rates compared with monocytes isolated from matched control subjects. Stratification based on HbA1c levels revealed that lower cytokine secretion was coupled to higher glycolytic rate of monocytes in patients with a higher glycemic burden. Circulating monocytes displayed an enhanced inflammatory gene expression profile associated with high glycemic burden. These results suggest that a high glycemic burden in patients with T1D is related to expression of inflammatory genes of monocytes and is associated with an impaired relationship between metabolism and inflammatory function upon activation.


Assuntos
Glicemia , Diabetes Mellitus Tipo 1/metabolismo , Monócitos/metabolismo , Adulto , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 1/genética , Feminino , Hemoglobinas Glicadas/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino
10.
Cell Rep ; 30(6): 1811-1822.e6, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049012

RESUMO

Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.


Assuntos
Tecido Adiposo/fisiopatologia , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA