Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619701

RESUMO

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Assuntos
Complexo de Proteína do Fotossistema II , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
2.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512089

RESUMO

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismo
3.
Nature ; 543(7645): 355-365, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300093

RESUMO

Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.


Assuntos
Biomimética/métodos , Fotossíntese , Teoria Quântica , Energia Solar , Bactérias/enzimologia , Bactérias/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/metabolismo
4.
Nature ; 543(7647): 647-656, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358065

RESUMO

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Assuntos
Biofísica , Modelos Biológicos , Modelos Químicos , Elétrons , Transferência de Energia , Metais/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Análise Espectral , Fatores de Tempo , Vibração
5.
Nano Lett ; 22(14): 5751-5758, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35787025

RESUMO

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems. The vibronic states in our stack are manifest as a palisade of pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances and can be shifted "on demand" through the application of a perpendicular electric field via a source-drain bias voltage. The observation of multiple well-resolved sidebands as well as their ability to be shifted by applied voltages vividly demonstrates the emergence of interlayer exciton vibronic structure in a stack-engineered optoelectronic device.

6.
Photosynth Res ; 151(3): 225-234, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34709567

RESUMO

To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Análise de Ondaletas , Transporte de Elétrons , Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Vibração
7.
Biophys J ; 120(9): 1680-1691, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675767

RESUMO

Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Carotenoides , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência
8.
J Am Chem Soc ; 142(41): 17346-17355, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32878439

RESUMO

Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems. Here we demonstrate the successful application of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric biological complex, trimers of LHCII. We demonstrate the application of global and target analysis (GTA) to FSRS data and utilize it to quantify excitation migration in LHCII trimers. This powerful combination of techniques allows us to obtain valuable insights into structural, electronic, and dynamic information from the carotenoids of LHCII trimers. We report spectral and dynamical information on ground- and excited-state vibrational modes of the different pigments, resolving the vibrational relaxation of the carotenoids and the pathways of energy transfer to chlorophylls. The lifetimes and spectral characteristics obtained for the S1 state confirm that lutein 2 has a distorted conformation in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls, while lutein 1 is the only carotenoid whose S1 state plays a significant energy-harvesting role. No appreciable energy transfer takes place from lutein 1 to lutein 2, contradicting recent proposals regarding the functions of the various carotenoids (Son et al. Chem. 2019, 5 (3), 575-584). Also, our results demonstrate that FSRS can be used in combination with GTA to simultaneously study the electronic and vibrational landscapes in LHCs and pave the way for in-depth studies of photoprotective conformations in photosynthetic systems.

9.
Photosynth Res ; 143(3): 233-239, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31768715

RESUMO

Because of their peculiar but intriguing photophysical properties, peridinin-chlorophyll-protein complexes (PCPs), the peripheral light-harvesting antenna complexes of photosynthetic dinoflagellates have been unique targets of multidimensional theoretical and experimental investigations over the last few decades. The major light-harvesting chlorophyll a (Chl a) pigments of PCP are hypothesized to be spectroscopically heterogeneous. To study the spectral heterogeneity in terms of electrostatic parameters, we, in this study, implemented Stark fluorescence spectroscopy on PCP isolated from the dinoflagellate Amphidinium carterae. The comprehensive theoretical modeling of the Stark fluorescence spectrum with the help of the conventional Liptay formalism revealed the simultaneous presence of three emission bands in the fluorescence spectrum of PCP recorded upon excitation of peridinin. The three emission bands are found to possess different sets of electrostatic parameters with essentially increasing magnitude of charge-transfer character from the blue to redder ones. The different magnitudes of electrostatic parameters give good support to the earlier proposition that the spectral heterogeneity in PCP results from emissive Chl a clusters anchored at a different sites and domains within the protein network.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Dinoflagellida/metabolismo , Proteínas/metabolismo , Espectrometria de Fluorescência
10.
Phys Chem Chem Phys ; 22(44): 25720-25729, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146173

RESUMO

The Lhca4 antenna complex of plant Photosystem I (PSI) is characterized by extremely red-shifted and broadened absorption and emission bands from its low-energy chlorophylls (Chls). The mixing of a charge-transfer (CT) state with the excited state manifold causing these so-called red forms results in highly complicated multi-component excited energy transfer (EET) kinetics within the complex. The two-dimensional electronic spectroscopy experiments presented here reveal that EET towards the CT state occurs on three timescales: fast from the red Chls (within 1 ps), slower (5-7 ps) from the stromal side Chls, and very slow (100-200 ps) from a newly discovered 690 nm luminal trap. The excellent agreement between the experimental data with the previously presented Redfield-Förster exciton model of Lhca4 strongly supports the equilibration scheme of the bulk excitations with the dynamically localized CT on the stromal side. Thus, a complete picture of the energy transfer pathways leading to the population of the CT final trap within the whole Lhca4 complex is presented. In view of the environmental sensitivity of the CT contribution to the Lhca4 energy landscape, we speculate that one role of the CT states is to regulate the EET from the peripheral antenna to the PSI core.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Fenômenos Bioquímicos
11.
Proc Natl Acad Sci U S A ; 114(52): E11063-E11071, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229806

RESUMO

Strong excitonic interactions are a key design strategy in photosynthetic light harvesting, expanding the spectral cross-section for light absorption and creating considerably faster and more robust excitation energy transfer. These molecular excitons are a direct result of exceptionally densely packed pigments in photosynthetic proteins. The main light-harvesting complexes of diatoms, known as fucoxanthin-chlorophyll proteins (FCPs), are an exception, displaying surprisingly weak excitonic coupling between their chlorophyll (Chl) a's, despite a high pigment density. Here, we show, using single-molecule spectroscopy, that the FCP complexes of Cyclotella meneghiniana switch frequently into stable, strongly emissive states shifted 4-10 nm toward the red. A few percent of isolated FCPa complexes and ∼20% of isolated FCPb complexes, on average, were observed to populate these previously unobserved states, percentages that agree with the steady-state fluorescence spectra of FCP ensembles. Thus, the complexes use their enhanced sensitivity to static disorder to increase their light-harvesting capability in a number of ways. A disordered exciton model based on the structure of the main plant light-harvesting complex explains the red-shifted emission by strong localization of the excitation energy on a single Chl a pigment in the terminal emitter domain due to very specific pigment orientations. We suggest that the specific construction of FCP gives the complex a unique strategy to ensure that its light-harvesting function remains robust in the fluctuating protein environment despite limited excitonic interactions.


Assuntos
Diatomáceas/química , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
12.
Chem Rev ; 117(2): 249-293, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27428615

RESUMO

The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.


Assuntos
Transferência de Energia , Luz , Fotossíntese , Humanos , Complexos de Proteínas Captadores de Luz/metabolismo , Pigmentos Biológicos/metabolismo , Proteobactérias/fisiologia
13.
Proc Natl Acad Sci U S A ; 113(11): 2934-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903650

RESUMO

Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Fluorescência/métodos , Bacterioclorofilas/química , Bacterioclorofilas/efeitos da radiação , Lasers , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Microscopia Confocal , Distribuição Normal , Rodopseudomonas/química , Estatísticas não Paramétricas , Tempo
14.
Biochim Biophys Acta Bioenerg ; 1859(9): 655-665, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981722

RESUMO

We model the energy transfer dynamics in the Lhca4 peripheral antenna of photosystem I from higher plants. Equilibration between the bulk exciton levels of the antenna and the red-shifted charge-transfer (CT) states is described using the numerically inexpensive Redfield-Förster approach and exact hierarchical equation (HEOM) method. We propose a compartmentalization scheme allowing a quantitatively correct description of the dynamics with the Redfield-Förster theory, including the exciton-type relaxation within strongly coupled compartments and hopping-type migration between them. The Redfield-Förster method gives the kinetics close to the HEOM solution when treating the CT state as dynamically localized. We also demonstrate that the excited states strongly coupled with the CT should be considered as localized as well.


Assuntos
Proteínas de Bactérias/química , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares
15.
Biochim Biophys Acta Bioenerg ; 1859(2): 137-144, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174011

RESUMO

It has already been established that the quaternary structure of the main light-harvesting complex (LH2) from the photosynthetic bacterium Rhodopseudomonas palustris is a nonameric 'ring' of PucAB heterodimers and under low-light culturing conditions an increased diversity of PucB synthesis occurs. In this work, single molecule fluorescence emission studies show that different classes of LH2 'rings' are present in "low-light" adapted cells and that an unknown chaperon process creates multiple sub-types of 'rings' with more conformational sub-states and configurations. This increase in spectral disorder significantly augments the cross-section for photon absorption and subsequent energy flow to the reaction centre trap when photon availability is a limiting factor. This work highlights yet another variant used by phototrophs to gather energy for cellular development.


Assuntos
Apoproteínas/química , Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Rodopseudomonas/química , Espectrometria de Fluorescência
16.
Biochim Biophys Acta Bioenerg ; 1859(2): 57-68, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29137991

RESUMO

Cyanobacterial thylakoid membranes are known to host photosynthetic and respiratory complexes. This hampers a straight forward interpretation of the highly dynamic fluorescence originating from photosynthetic units. The present study focuses on dark-to-light transitions in whole cells of a PSI-deficient mutant of the cyanobacterium Synechocystis sp. PCC 6803. The time-dependent cellular fluorescence spectrum has been measured, while having previously exposed the cells to different conditions that affect respiratory activity. The analysis method used allows the detected signal to be decomposed in a few components that are then assigned to functional emitting species. Additionally, we have worked out a minimal mathematical model consisting of sensible postulated species to interpret the recorded data. We conclude that the following two functional complexes play a major role: a phycobilisome antenna complex coupled to a PSII dimer with either two or no closed reaction centers. Crucially, we present evidence for an additional species capable of strongly quenching fluorescence, whose formation requires the presence of oxygen.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/química , Synechocystis/enzimologia , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência
17.
J Am Chem Soc ; 140(51): 17923-17931, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30188698

RESUMO

Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical H2O oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species. The results show that photosystem II reacts with O2 through two main pathways that both involve a superoxide intermediate to produce H2O2. The first pathway involves the established chlorophyll triplet-mediated formation of singlet oxygen, which is followed by its reduction to superoxide at the electrode surface. The second pathway is specific for the enzyme/electrode interface: an exposed antenna chlorophyll is sufficiently close to the electrode for rapid injection of an electron to form a highly reducing chlorophyll anion, which reacts with O2 in solution to produce O2•-. Incomplete H2O oxidation does not significantly contribute to reactive oxygen formation in our conditions. The rotating ring disk electrode technique allows the chemical reactivity of photosystem II to be studied electrochemically and opens several avenues for future investigation.

18.
Photosynth Res ; 135(1-3): 115-124, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29030777

RESUMO

Excitation energy transfer (EET) and trapping in Synechococcus WH 7803 whole cells and isolated photosystem I (PSI) complexes have been studied by time-resolved emission spectroscopy at room temperature (RT) and at 77 K. With the help of global and target analysis, the pathways of EET and the charge separation dynamics have been identified. Energy absorbed in the phycobilisome (PB) rods by the abundant phycoerythrin (PE) is funneled to phycocyanin (PC645) and from there to the core that contains allophycocyanin (APC660 and APC680). Intra-PB EET rates have been estimated to range from 11 to 68/ns. It was estimated that at RT, the terminal emitter of the phycobilisome, APC680, transfers its energy at a rate of 90/ns to PSI and at a rate of 50/ns to PSII. At 77 K, the redshifted Chl a states in the PSI core were heterogeneous, with maximum emission at 697 and 707 nm. In 72% of the PSI complexes, the bulk Chl a in equilibrium with F697 decayed with a main trapping lifetime of 39 ps.


Assuntos
Transferência de Energia , Synechococcus/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Especificidade da Espécie , Espectrometria de Fluorescência , Synechococcus/citologia , Temperatura
19.
Photosynth Res ; 137(2): 321-335, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29619738

RESUMO

Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Transferência de Energia , Complexo de Proteína do Fotossistema I/fisiologia , Espectrometria de Fluorescência
20.
Photosynth Res ; 135(1-3): 87-102, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28721458

RESUMO

In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272-279, 2009). The rods and core contain phycocyanin and allophycocyanin pigments, respectively. Together these pigments absorb light between 400 and 650 nm. Time-resolved difference absorption spectra from wild-type PB and rod mutants have been measured in different quenching and annihilation conditions. Based upon a global analysis of these data and of published time-resolved emission spectra, a functional compartmental model of the phycobilisome is proposed. The model describes all experiments with a common set of parameters. Three annihilation time constants are estimated, 3, 25, and 147 ps, which represent, respectively, intradisk, interdisk/intracylinder, and intercylinder annihilation. The species-associated difference absorption and emission spectra of two phycocyanin and two allophycocyanin pigments are consistently estimated, as well as all the excitation energy transfer rates. Thus, the wild-type PB containing 396 pigments can be described by a functional compartmental model of 22 compartments. When the interhexamer equilibration within a rod is not taken into account, this can be further simplified to ten compartments, which is the minimal model. In this model, the slowest excitation energy transfer rates are between the core cylinders (time constants 115-145 ps), and between the rods and the core (time constants 68-115 ps).


Assuntos
Modelos Biológicos , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Simulação por Computador , Transferência de Energia , Ficobilissomas/química , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA