RESUMO
Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.
Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula ÚnicaRESUMO
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.
Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genéticaRESUMO
Microtubule affinity-regulating kinase 2 (MARK2) contributes to establishing neuronal polarity and developing dendritic spines. Although large-scale sequencing studies have associated MARK2 variants with autism spectrum disorder (ASD), the clinical features and variant spectrum in affected individuals with MARK2 variants, early developmental phenotypes in mutant human neurons, and the pathogenic mechanism underlying effects on neuronal development have remained unclear. Here, we report 31 individuals with MARK2 variants and presenting with ASD, other neurodevelopmental disorders, and distinctive facial features. Loss-of-function (LoF) variants predominate (81%) in affected individuals, while computational analysis and in vitro expression assay of missense variants supported the effect of MARK2 loss. Using proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs), we show that MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and dis-organization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behavior. Through the use of RNA sequencing (RNA-seq) and lithium treatment, we link MARK2 loss to downregulation of the WNT/ß-catenin signaling pathway and identify lithium as a potential drug for treating MARK2-associated ASD.
RESUMO
De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Animais , Fácies , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Drosophila , Deficiência Intelectual/patologia , Histona Desmetilases com o Domínio Jumonji/genéticaRESUMO
Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.
Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , UbiquitinaçãoRESUMO
We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Proteínas de Ciclo Celular/genéticaRESUMO
PURPOSE: The Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS. METHODS: We report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology. RESULTS: In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake. CONCLUSION: VPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.
Assuntos
Anormalidades Múltiplas , Síndrome de Dandy-Walker , Comunicação Interatrial , Hipercolesterolemia , Humanos , Anormalidades Múltiplas/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial/genéticaRESUMO
PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , MutaçãoRESUMO
TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.
Assuntos
Transtornos do Neurodesenvolvimento , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Criança , Humanos , Deficiências do Desenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismoRESUMO
The actin cytoskeleton is regulated by many proteins including capping proteins that stabilize actin filaments (F-actin) by inhibiting actin polymerization and depolymerization. Here, we report two pediatric probands who carry damaging heterozygous de novo mutations in CAPZA2 (HGNC: 1490) and exhibit neurological symptoms with shared phenotypes including global motor development delay, speech delay, intellectual disability, hypotonia and a history of seizures. CAPZA2 encodes a subunit of an F-actin-capping protein complex (CapZ). CapZ is an obligate heterodimer consisting of α and ß heterodimer conserved from yeast to human. Vertebrate genomes contain three α subunits encoded by three different genes and CAPZA2 encodes the α2 subunit. The single orthologue of CAPZA genes in Drosophila is cpa. Loss of cpa leads to lethality in early development and expression of the human reference; CAPZA2 rescues this lethality. However, the two CAPZA2 variants identified in the probands rescue this lethality at lower efficiency than the reference. Moreover, expression of the CAPZA2 variants affects bristle morphogenesis, a process that requires extensive actin polymerization and bundling during development. Taken together, our findings suggest that variants in CAPZA2 lead to a non-syndromic neurodevelopmental disorder in children.
Assuntos
Proteína de Capeamento de Actina CapZ/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Citoesqueleto de Actina/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/patologia , Mutação/genética , FenótipoRESUMO
PURPOSE: Exome and genome sequencing have drastically accelerated novel disease gene discoveries. However, discovery is still hindered by myriad variants of uncertain significance found in genes of undetermined biological function. This necessitates intensive functional experiments on genes of equal predicted causality, leading to a major bottleneck. METHODS: We apply the loss-of-function observed/expected upper-bound fraction metric of intolerance to gene inactivation to curate a list of predicted haploinsufficient disease genes. Using data from the 100,000 Genomes Project, we adopt a gene-to-patient approach that matches de novo loss-of-function variants in constrained genes to patients with rare disease. Through large-scale aggregation of data, we reduce excess analytical noise currently hindering novel discoveries. RESULTS: Results from 13,949 trios revealed 643 rare, de novo predicted loss-of-function events filtered from 1044 loss-of-function observed/expected upper-bound fraction-constrained genes. A total of 168 variants occurred within 126 genes without a known disease-gene relationship. Of these, 27 genes had >1 kindred affected, and for 18 of these genes, multiple kindreds had overlapping phenotypes. Two years after initial analysis, 11 of 18 (61%) of these genes have been independently published as novel disease gene discoveries. CONCLUSION: Using large cohorts and adopting gene-based approaches can rapidly and objectively accelerate dominantly inherited novel gene discovery by targeting the most appropriate genes for functional validation.
Assuntos
Exoma , Exoma/genética , Estudos de Associação Genética , Humanos , Fenótipo , Sequenciamento do ExomaRESUMO
PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA/genética , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.
Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto JovemRESUMO
BACKGROUND: Often only chronic kidney disease (CKD) patients with high likelihood of genetic disease are offered genetic testing. Early genetic testing could obviate the need for kidney biopsies, allowing for adequate prognostication and treatment. To test the viability of a 'genetics-first' approach for CKD, we performed genetic testing in a group of kidney transplant recipients aged <50 years, irrespective of cause of transplant. METHODS: From a cohort of 273 transplant patients, we selected 110 that were in care in the University Medical Center Utrecht, had DNA available and were without clear-cut non-genetic disease. Forty patients had been diagnosed with a genetic disease prior to enrollment; in 70 patients, we performed a whole-exome sequencing-based 379 gene panel analysis. RESULTS: Genetic analysis yielded a diagnosis in 51%. Extrapolated to the 273 patient cohort, who did not all fit the inclusion criteria, the diagnostic yield was still 21%. Retrospectively, in 43% of biopsied patients, the kidney biopsy would not have had added diagnostic value if genetic testing had been performed as a first-tier diagnostic. CONCLUSIONS: The burden of monogenic disease in transplant patients with end-stage kidney disease (ESKD) of any cause prior to the age of 50 years is between 21% and 51%. Early genetic testing can provide a non-invasive diagnostic, impacting prognostication and treatment, and obviating the need for an invasive biopsy. We conclude that in patients who expect to develop ESKD prior to the age of 50 years, genetic testing should be considered as first mode of diagnostics.
Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Estudos de Coortes , Testes Genéticos , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Pessoa de Meia-Idade , Insuficiência Renal Crônica/complicações , Estudos RetrospectivosRESUMO
PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Sequenciamento do ExomaRESUMO
PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."
Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína 25 Associada a Sinaptossoma/genética , Pré-Escolar , Epilepsia/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
The CAMTA1-associated phenotype was initially defined in patients with intragenic deletions and duplications who showed nonprogressive congenital ataxia, with or without intellectual disability. Here, we describe 10 individuals with CAMTA1 variants: nine previously unreported (likely) pathogenic variants comprising one missense, four frameshift and four nonsense variants, and one missense variant of unknown significance. Six patients were diagnosed following whole exome sequencing and four individuals with exome-based targeted panel analysis. Most of them present with developmental delay, manifesting in speech and motor delay. Other frequent findings are hypotonia, cognitive impairment, cerebellar dysfunction, oculomotor abnormalities, and behavioral problems. Feeding problems occur more frequently than previously observed. In addition, we present a systematic review of 19 previously published individuals with causal variants, including copy number, truncating, and missense variants. We note a tendency of more severe cognitive impairment and recurrent dysmorphic features in individuals with a copy number variant. Pathogenic variants are predominantly observed in and near the N- and C- terminal functional domains. Clinical heterogeneity is observed, but 3'-terminal variants seem to associate with less pronounced cerebellar dysfunction.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Doenças do Sistema Nervoso/genética , Transativadores/genética , Adolescente , Criança , Pré-Escolar , Transtornos Cognitivos/genética , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Masculino , FenótipoRESUMO
Crypt stem cells represent the cells of origin for intestinal neoplasia. Both mouse and human intestinal stem cells can be cultured in medium containing the stem-cell-niche factors WNT, R-spondin, epidermal growth factor (EGF) and noggin over long time periods as epithelial organoids that remain genetically and phenotypically stable. Here we utilize CRISPR/Cas9 technology for targeted gene modification of four of the most commonly mutated colorectal cancer genes (APC, P53 (also known as TP53), KRAS and SMAD4) in cultured human intestinal stem cells. Mutant organoids can be selected by removing individual growth factors from the culture medium. Quadruple mutants grow independently of all stem-cell-niche factors and tolerate the presence of the P53 stabilizer nutlin-3. Upon xenotransplantation into mice, quadruple mutants grow as tumours with features of invasive carcinoma. Finally, combined loss of APC and P53 is sufficient for the appearance of extensive aneuploidy, a hallmark of tumour progression.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Intestinos/patologia , Mutação/genética , Organoides/metabolismo , Organoides/patologia , Células-Tronco/patologia , Aneuploidia , Animais , Sistemas CRISPR-Cas , Criança , Pré-Escolar , Neoplasias Colorretais/metabolismo , Feminino , Genes APC , Genes p53/genética , Xenoenxertos , Humanos , Imidazóis , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transplante de Neoplasias , Piperazinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Smad4/deficiência , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismoRESUMO
Pathogenic variants in HNRNPH1 were first reported in 2018. The reported individual, a 13 year old boy with a c.616C>T (p.R206W) variant in the HNRNPH1 gene, was noted to have overlapping symptoms with those observed in HNRNPH2-related X-linked intellectual disability, Bain type (MRXSB), specifically intellectual disability and dysmorphic features. While HNRNPH1 variants were initially proposed to represent an autosomal cause of MRXSB, we report an additional seven cases which identify phenotypic differences from MRXSB. Patients with HNRNPH1 pathogenic variants diagnosed via WES were identified using clinical networks and GeneMatcher. Features unique to individuals with HNRNPH1 variants include distinctive dysmorphic facial features; an increased incidence of congenital anomalies including cranial and brain abnormalities, genitourinary malformations, and palate abnormalities; increased incidence of ophthalmologic abnormalities; and a decreased incidence of epilepsy and cardiac defects compared to those with MRXSB. This suggests that pathogenic variants in HNRNPH1 result in a related, but distinct syndromic cause of intellectual disability from MRXSB, which we refer to as HNRNPH1-related syndromic intellectual disability.