Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1974-1987, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215498

RESUMO

Here, we present the development and characterization of the novel PhenTAA macrocycle as well as a series of [Ni(R2PhenTAA)]n complexes featuring two sites for ligand-centered redox-activity. These differ in the substituent R (R = H, Me, or Ph) and overall charge of the complex n (n = -2, -1, 0, +1, or +2). Electrochemical and spectroscopic techniques (CV, UV/vis-SEC, X-band EPR) reveal that all redox events of the [Ni(R2PhenTAA)] complexes are ligand-based, with accessible ligand charges of -2, -1, 0, +1, and +2. The o-phenylenediamide (OPD) group functions as the electron donor, while the imine moieties act as electron acceptors. The flanking o-aminobenzaldimine groups delocalize spin density in both the oxidized and reduced ligand states. The reduced complexes have different stabilities depending on the substituent R. For R = H, dimerization occurs upon reduction, whereas for R = Me/Ph, the reduced imine groups are stabilized. This also gives electrochemical access to a [Ni(R2PhenTAA)]2- species. DFT and TD-DFT calculations corroborate these findings and further illustrate the unique donor-acceptor properties of the respective OPD and imine moieties. The novel [Ni(R2PhenTAA)] complexes exhibit up to five different ligand-based oxidation states and are electrochemically stable in a range from -2.4 to +1.8 V for the Me/Ph complexes (vs Fc/Fc+).

2.
Chemistry ; 27(1): 371-378, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810326

RESUMO

The cobalt species PPh4 [CoIII (TAMLred )] is a competent and stable catalyst for the sulfimidation of (aryl)(alkyl)-substituted sulfides with iminoiodinanes, reaching turnover numbers up to 900 and turnover frequencies of 640 min-1 under mild and aerobic conditions. The sulfimidation proceeds in a highly chemoselective manner, even in the presence of alkenes or weak C-H bonds, as supported by inter- and intramolecular competition experiments. Functionalization of the sulfide substituent with various electron-donating and electron-withdrawing arenes and several alkyl, benzyl and vinyl fragments is tolerated, with up to quantitative product yields. Sulfimidation of phenyl allyl sulfide led to [2,3]-sigmatropic rearrangement of the initially formed sulfimide species to afford the corresponding N-allyl-S-phenyl-thiohydroxylamines as attractive products. Mechanistic studies suggest that the actual nitrene transfer to the sulfide proceeds via (previously characterized) electrophilic nitrene radical intermediates that afford the sulfimide products via electronically asynchronous transition states, in which SET from the sulfide to the nitrene radical complex precedes N-S bond formation in a single concerted process.

3.
Chemistry ; 27(68): 16978-16989, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156122

RESUMO

Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M-H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co-H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.

4.
Chemistry ; 27(60): 14936-14946, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34424579

RESUMO

Reactions of di-tert-butyldiphosphatetrahedrane (1) with cycloocta-1,5-diene- or anthracene-stabilised metalate anions of iron and cobalt consistently afford complexes of the rarely encountered 1,2-diphosphacyclobutadiene ligand, which have previously been very challenging synthetic targets. The subsequent reactivity of 1,2-diphosphacyclobutadiene cobaltates toward various electrophiles has also been investigated and is compared to reactions of related 1,3-diphosphacyclobutadiene complexes. The results highlight the distinct reactivity of such isomeric species, showing that the 1,2-isomers can act as precursors for previously unknown triphospholium ligands. The electronic structures of the new complexes were investigated by several methods, including NMR, EPR and Mößbauer spectroscopies as well as quantum chemical calculations.


Assuntos
Cobalto , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Espectroscopia de Mossbauer
5.
Inorg Chem ; 60(12): 8380-8387, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096281

RESUMO

Cobalt porphyrin complexes are established catalysts for carbene and nitrene radical group-transfer reactions. The key carbene and mono- and bisnitrene radical complexes coordinated to [Co(TPP)] (TPP = tetraphenylporphyrin) have previously been investigated with a variety of experimental techniques and supporting (single-reference) density functional theory (DFT) calculations that indicated doublet (S = 1/2) ground states for all three species. In this contribution, we revisit their electronic structures with multireference N-electron valence state perturbation theory (NEVPT2)-complete-active-space self-consistent-field (CASSCF) calculations to investigate possible multireference contributions to the ground-state wave functions. The carbene ([CoIII(TPP)(•CHCO2Et)]) and mononitrene ([CoIII(TPP)(•NNs)]) radical complexes were confirmed to have uncomplicated doublet ground states, although a higher carbene or nitrene radical character and a lower Co-C/N bond order was found in the NEVPT2-CASSCF calculations. Supported by electron paramagnetic resonance analysis and spin counting, paramagnetic molar susceptibility determination, and NEVPT2-CASSCF calculations, we report that the cobalt porphyrin bisnitrene complex ([CoIII(TPP•)(•NNs)2]) has a quartet (S = 3/2) spin ground state, with a thermally accesible multireference and multideterminant "broken-symmetry" doublet spin excited state. A spin flip on the porphyrin-centered unpaired electron allows for interconversion between the quartet and broken-symmetry doublet spin states, with an approximate 10-fold higher Boltzmann population of the quartet at room temperature.

6.
J Am Chem Soc ; 142(1): 552-563, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31846578

RESUMO

The redox noninnocence of the TAML scaffold in cobalt-TAML (tetra-amido macrocyclic ligand) complexes has been under debate since 2006. In this work, we demonstrate with a variety of spectroscopic measurements that the TAML backbone in the anionic complex [CoIII(TAMLred)]- is truly redox noninnocent and that one-electron oxidation affords [CoIII(TAMLsq)]. Multireference (CASSCF) calculations show that the electronic structure of [CoIII(TAMLsq)] is best described as an intermediate spin (S = 1) cobalt(III) center that is antiferromagnetically coupled to a ligand-centered radical, affording an overall doublet (S = 1/2) ground-state. Reaction of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor leads to TAML-centered oxidation and produces nitrene radical complexes without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLsq) determines whether mono- or bis-nitrene radical complexes are formed. Reaction of [CoIII(TAMLsq)] or [CoIII(TAMLred)]- with PhINNs results in the formation of [CoIII(TAMLq)(N•Ns)] and [CoIII(TAMLq)(N•Ns)2]-, respectively. Herein, ligand-to-substrate single-electron transfer results in one-electron-reduced Fischer-type nitrene radicals (N•Ns-) that are intermediates in catalytic nitrene transfer to styrene. These nitrene radical species were characterized by EPR, XANES, and UV-vis spectroscopy, high-resolution mass spectrometry, magnetic moment measurements, and supporting CASSCF calculations.

7.
Chemistry ; 26(41): 9005-9011, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32259331

RESUMO

Archetypal phosphine/borane frustrated Lewis pairs (FLPs) are famed for their ability to activate small molecules. The mechanism is generally believed to involve two-electron processes. However, the detection of radical intermediates indicates that single-electron transfer (SET) generating frustrated radical pairs could also play an important role. These highly reactive radical species typically have significantly higher energy than the FLP, which prompted this investigation into their formation. Herein, we provide evidence that the classical phosphine/borane combinations PMes3 /B(C6 F5 )3 and PtBu3 /B(C6 F5 )3 both form an electron donor-acceptor (charge-transfer) complex that undergoes visible-light-induced SET to form the corresponding highly reactive radical-ion pairs. Subsequently, we show that by tuning the properties of the Lewis acid/base pair, the energy required for SET can be reduced to become thermally accessible.

8.
Inorg Chem ; 59(17): 12903-12912, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32815718

RESUMO

The influence of a redox-active ligand on spin-changing events induced by the coordination of exogenous donors is investigated within the cobalt complex [CoII(DPP·2-)], bearing a redox-active DPP2- ligand (DPP = dipyrrin-bis(o,p-di-tert-butylphenolato) with a pentafluorophenyl moiety on the meso-position. This square-planar complex was subjected to the coordination of tetrahydrofuran (THF), pyridine, tBuNH2, and AdNH2 (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (X-ray diffraction, NMR, UV-visible, high-resolution mass spectrometry, superconducting quantum interference device, Evans' method) and computational (density functional theory, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states, and orbital compositions of the corresponding octahedral bis-donor adducts, relative to [CoII(DPP·2-)]. This starting species is best described as an open-shell singlet complex containing a DPP·2- ligand radical that is antiferromagnetically coupled to a low-spin (S = 1/2) cobalt(II) center. The redox-active DPPn- ligand plays a crucial role in stabilizing this complex and in its facile conversion to the triplet THF adduct [CoII(DPP·2-)(THF)2] and closed-shell singlet pyridine and amine adducts [CoIII(DPP3-)(L)2] (L = py, tBuNH2, or AdNH2). Coordination of the weak donor THF to [CoII(DPP·2-)] changes the orbital overlap between the DPP·2- ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP·2- ligand. In contrast, coordination of the stronger donors pyridine, tBuNH2, or AdNH2 induces metal-to-ligand single-electron transfer, resulting in the formation of low-spin (S = 0) cobalt(III) complexes [CoIII(DPP3-)(L)2] containing a fully reduced DPP3- ligand, thus explaining their closed-shell singlet electronic ground states.

9.
Inorg Chem ; 59(21): 16035-16052, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078926

RESUMO

The synthesis of rare anionic heteroleptic and homoleptic α-diimine iron complexes is described. Heteroleptic BIAN (bis(aryl)iminoacenaphthene) complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] were synthesized by reduction of the [(BIAN)FeBr2] precursor complex using stoichiometric amounts of potassium graphite in the presence of the corresponding olefin. The electronic structure of these paramagnetic species was investigated by numerous spectroscopic analyses (NMR, EPR, 57Fe Mössbauer, UV-vis), magnetic measurements (Evans NMR method, SQUID), and theoretical techniques (DFT, CASSCF). Whereas anion 1 is a low-spin complex, anion 2 consists of an intermediate-spin Fe(III) center. Both complexes are efficient precatalysts for the hydroboration of carbonyl compounds under mild reaction conditions. The reaction of bis(anthracene) ferrate(1-) gave the homoleptic BIAN complex 3-[K([18]c-6)(thf)], which is less catalytically active. The electronic structure was elucidated with the same techniques as described for complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] and revealed an Fe(II) species in a quartet ground state.

10.
Angew Chem Int Ed Engl ; 59(33): 14148-14153, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32348622

RESUMO

The reaction of zerovalent nickel compounds with white phosphorus (P4 ) is a barely explored route to binary nickel phosphide clusters. Here, we show that coordinatively and electronically unsaturated N-heterocyclic carbene (NHC) nickel(0) complexes afford unusual cluster compounds with P1 , P3 , P5 and P8 units. Using [Ni(IMes)2 ] [IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene], electron-deficient Ni3 P4 and Ni3 P6 clusters have been isolated, which can be described as superhypercloso and hypercloso clusters according to the Wade-Mingos rules. Use of the bulkier NHC complexes [Ni(IPr)2 ] or [(IPr)Ni(η6 -toluene)] [IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene] affords a closo-Ni3 P8 cluster. Inverse-sandwich complexes [(NHC)2 Ni2 P5 ] (NHC=IMes, IPr) with an aromatic cyclo-P5 - ligand were identified as additional products.

11.
Angew Chem Int Ed Engl ; 59(49): 22210-22216, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840947

RESUMO

Frustrated Lewis pairs (FLPs) are well known for their ability to activate small molecules. Recent reports of radical formation within such systems indicate single-electron transfer (SET) could play an important role in their chemistry. Herein, we investigate radical formation upon reacting FLP systems with dihydrogen, triphenyltin hydride, or tetrachloro-1,4-benzoquinone (TCQ) both experimentally and computationally to determine the nature of the single-electron transfer (SET) events; that is, being direct SET to B(C6 F5 )3 or not. The reactions of H2 and Ph3 SnH with archetypal P/B FLP systems do not proceed via a radical mechanism. In contrast, reaction with TCQ proceeds via SET, which is only feasible by Lewis acid coordination to the substrate. Furthermore, SET from the Lewis base to the Lewis acid-substrate adduct may be prevalent in other reported examples of radical FLP chemistry, which provides important design principles for radical main-group chemistry.

12.
Chemistry ; 25(23): 5987-5993, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30793814

RESUMO

A new method for the one-step C-H amination of xanthene and thioxanthene with sulfonamides is reported, without the need for any metal catalyst. A benzoquinone was employed as a hydride (or two-electron and one-proton) acceptor. Moreover, a previously unknown and uncatalyzed reaction between iminoiodanes and xanthene, thioxanthene and dihydroacridines (9,10-dihydro-9-heteroanthracenes or dihydroheteroanthracenes) is disclosed. The reactions proceed through hydride transfer from the heteroarene substrate to the iminoiodane or benzoquinone, followed by conjugate addition of the sulfonamide to the oxidized heteroaromatic compounds. These findings may have important mechanistic implications for metal-catalyzed C-H amination processes involving nitrene transfer from iminoiodanes to dihydroheteroanthracenes. Due to the weak C-H bond, xanthene is an often-employed substrate in mechanistic studies of C-H amination reactions, which are generally proposed to proceed via metal-catalyzed nitrene insertion, especially for reactions involving nitrene or imido complexes that are less reactive (i.e., less strongly oxidizing). However, these substrates clearly undergo non-catalyzed (proton-coupled) redox coupling with amines, thus providing alternative pathways to the widely assumed metal-catalyzed pathways.

13.
Angew Chem Int Ed Engl ; 57(37): 11929-11933, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051582

RESUMO

Inspired by the commercially available azoimidazolium dyes (e.g., Basic Red 51) that can be obtained from aryldiazonium salts and N-heterocyclic carbenes, we developed the synthesis of a unique set of arylazophosphonium salts. A range of colours were obtained by applying readily tuneable phosphine donor ligands and para-substituted aryldiazonium salts as nitrogen-based Lewis acids. With cyclic voltammetry, a general procedure was designed to establish whether the reaction between a Lewis acid and a Lewis base occurs by single-electron transfer or electron-pair transfer.

14.
J Am Chem Soc ; 139(14): 5117-5124, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298089

RESUMO

Coordination of FeCl3 to the redox-active pyridine-aminophenol ligand NNOH2 in the presence of base and under aerobic conditions generates FeCl2(NNOISQ) (1), featuring high-spin FeIII and an NNOISQ radical ligand. The complex has an overall S = 2 spin state, as deduced from experimental and computational data. The ligand-centered radical couples antiferromagnetically with the Fe center. Readily available, well-defined, and air-stable 1 catalyzes the challenging intramolecular direct C(sp3)-H amination of unactivated organic azides to generate a range of saturated N-heterocycles with the highest turnover number (TON) (1 mol% of 1, 12 h, TON = 62; 0.1 mol% of 1, 7 days, TON = 620) reported to date. The catalyst is easily recycled without noticeable loss of catalytic activity. A detailed kinetic study for C(sp3)-H amination of 1-azido-4-phenylbutane (S1) revealed zero order in the azide substrate and first order in both the catalyst and Boc2O. A cationic iron complex, generated from the neutral precatalyst upon reaction with Boc2O, is proposed as the catalytically active species.

15.
Chemistry ; 23(33): 7945-7952, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28332743

RESUMO

Cobalt-porphyrin-catalysed intramolecular ring-closing C-H bond amination enables direct synthesis of various N-heterocycles from aliphatic azides. Pyrrolidines, oxazolidines, imidazolidines, isoindolines and tetrahydroisoquinoline can be obtained in good to excellent yields in a single reaction step with an air- and moisture-stable catalyst. Kinetic studies of the reaction in combination with DFT calculations reveal a metallo-radical-type mechanism involving rate-limiting azide activation to form the key cobalt(III)-nitrene radical intermediate. A subsequent low barrier intramolecular hydrogen-atom transfer from a benzylic C-H bond to the nitrene-radical intermediate followed by a radical rebound step leads to formation of the desired N-heterocyclic ring products. Kinetic isotope competition experiments are in agreement with a radical-type C-H bond-activation step (intramolecular KIE=7), which occurs after the rate-limiting azide activation step. The use of di-tert-butyldicarbonate (Boc2 O) significantly enhances the reaction rate by preventing competitive binding of the formed amine product. Under these conditions, the reaction shows clean first-order kinetics in both the [catalyst] and the [azide substrate], and is zero-order in [Boc2 O]. Modest enantioselectivities (29-46 % ee in the temperature range of 100-80 °C) could be achieved in the ring closure of (4-azidobutyl)benzene using a new chiral cobalt-porphyrin catalyst equipped with four (1S)-(-)-camphanic-ester groups.

16.
Inorg Chem ; 56(20): 12421-12435, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28968088

RESUMO

A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO]2- dianions, of the general formula [(OCO)CoIIL] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)CoIIL] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc+/Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [(SOCO)CoIII(THF)2]+ containing a closed-shell [SOCO]2- diphenolate ligand bound to a S = 1 Co(III) center, or [(SOCO•)CoII(THF)2]+ with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [SOCO•]- containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [(SOCO0)CoII(THF)3]2+, with a single unpaired electron localized on the d7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell SOCO0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.

17.
Inorg Chem ; 55(17): 8603-11, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27525360

RESUMO

The synthesis, spectroelectrochemical characterization (ultraviolet-visible and nuclear magnetic resonance), solid state structures, and computational metric parameters of three isostructural PdCl(NNO) complexes 1 [PdCl(NNO(ISQ))], 2 {[PdCl(NNO(AP))](-)}, and 5 {[PdCl(NNO(IBQ))](+)} (NNO = o-aminophenol-derived redox-active ligand with a pendant pyridine) with different NNO oxidation states are described. The reduced diamagnetic complex 2 readily reacts with halogenated solvents, including lattice solvent from crystalline pure material, as supported by spectroscopic data and density functional theory calculations. Thorough removal of chlorinated impurities allows for modest catalytic turnover in the conversion of 4-phenylbutyl azide into N-protected 2-phenylpyrrolidine, which is the first example of a palladium-catalyzed radical-type transformation facilitated by a redox-active ligand as well as the first C-H amination mediated by ligand-to-substrate single-electron transfer.

18.
Catal Sci Technol ; 13(7): 2255-2260, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37025647

RESUMO

Single-atom catalysts often show exceptionally high performance per metal loading. However, the isolated atom sites tend to agglomerate during preparation and/or high-temperature reaction. Here we show that in the case of Rh/Al2O3 this deactivation can be prevented by dissolution/exsolution of metal atoms into/from the support. We design and synthesise a series of single-atom catalysts, characterise them and study the impact of exsolution in the dry reforming of methane at 700-900 °C. The catalysts' performance increases with increasing reaction time, as the rhodium atoms migrate from the subsurface to the surface. Although the oxidation state of rhodium changes from Rh(iii) to Rh(ii) or Rh(0) during catalysis, atom migration is the main factor affecting catalyst performance. The implications of these results for preparing real-life catalysts are discussed.

19.
Chem Sci ; 13(7): 2094-2104, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308864

RESUMO

Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton-electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal-metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand's naphthyridine core enables both heterolytic metal-ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)-H bonds by ∼25 kcal mol-1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)-iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.

20.
JACS Au ; 1(8): 1101-1115, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467352

RESUMO

Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA