Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(2): 366-76, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22796012

RESUMO

Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP:


Assuntos
Adipócitos/classificação , Adipócitos/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Separação Celular , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 1
2.
Diabetologia ; 65(4): 721-732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106618

RESUMO

AIMS/HYPOTHESIS: In our modern society, artificial light is available around the clock and most people expose themselves to electrical light and light-emissive screens during the dark period of the natural light/dark cycle. Such suboptimal lighting conditions have been associated with adverse metabolic effects, and redesigning indoor lighting conditions to mimic the natural light/dark cycle more closely holds promise to improve metabolic health. Our objective was to compare metabolic responses to lighting conditions that resemble the natural light/dark cycle in contrast to suboptimal lighting in individuals at risk of developing metabolic diseases. METHODS: Therefore, we here performed a non-blinded, randomised, controlled, crossover trial in which overweight insulin-resistant volunteers (n = 14) were exposed to two 40 h laboratory sessions with different 24 h lighting protocols while staying in a metabolic chamber under real-life conditions. In the Bright day-Dim evening condition, volunteers were exposed to electric bright light (~1250 lx) during the daytime (08:00-18:00 h) and to dim light (~5 lx) during the evening (18:00-23:00 h). Vice versa, in the Dim day-Bright evening condition, volunteers were exposed to dim light during the daytime and bright light during the evening. Randomisation and allocation to light conditions were carried out by sequential numbering. During both lighting protocols, we performed 24 h indirect calorimetry, and continuous core body and skin temperature measurements, and took frequent blood samples. The primary outcome was plasma glucose focusing on the pre- and postprandial periods of the intervention. RESULTS: Spending the day in bright light resulted in a greater increase in postprandial triacylglycerol levels following breakfast, but lower glucose levels preceding the dinner meal at 18:00 h, compared with dim light (5.0 ± 0.2 vs 5.2 ± 0.2 mmol/l, n = 13, p=0.02). Dim day-Bright evening reduced the increase in postprandial glucose after dinner compared with Bright day-Dim evening (incremental AUC: 307 ± 55 vs 394 ± 66 mmol/l × min, n = 13, p=0.009). After the Bright day-Dim evening condition the sleeping metabolic rate was identical compared with the baseline night, whereas it dropped after Dim day-Bright evening. Melatonin secretion in the evening was strongly suppressed for Dim day-Bright evening but not for Bright day-Dim evening. Distal skin temperature for Bright day-Dim evening was lower at 18:00 h (28.8 ± 0.3°C vs 29.9 ± 0.4°C, n = 13, p=0.039) and higher at 23:00 h compared with Dim day-Bright evening (30.1 ± 0.3°C vs 28.8 ± 0.3°C, n = 13, p=0.006). Fasting and postprandial plasma insulin levels and the respiratory exchange ratio were not different between the two lighting protocols at any time. CONCLUSIONS/INTERPRETATION: Together, these findings suggest that the indoor light environment modulates postprandial substrate handling, energy expenditure and thermoregulation of insulin-resistant volunteers in a time-of-day-dependent manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT03829982. FUNDING: We acknowledge the financial support from the Netherlands Cardiovascular Research Initiative: an initiative with support from the Dutch Heart Foundation (CVON2014-02 ENERGISE).


Assuntos
Insulina , Fotoperíodo , Regulação da Temperatura Corporal , Ritmo Circadiano/fisiologia , Metabolismo Energético , Glucose , Humanos
3.
Proc Natl Acad Sci U S A ; 115(30): 7789-7794, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987027

RESUMO

Circadian misalignment, such as in shift work, has been associated with obesity and type 2 diabetes. However, direct effects of circadian misalignment on skeletal muscle insulin sensitivity and the muscle molecular circadian clock have never been studied in humans. Here, we investigated insulin sensitivity and muscle metabolism in 14 healthy young lean men [age 22.4 ± 2.8 years; body mass index (BMI) 22.3 ± 2.1 kg/m2 (mean ± SD)] after a 3-d control protocol and a 3.5-d misalignment protocol induced by a 12-h rapid shift of the behavioral cycle. We show that short-term circadian misalignment results in a significant decrease in muscle insulin sensitivity due to a reduced skeletal muscle nonoxidative glucose disposal (rate of disappearance: 23.7 ± 2.4 vs. 18.4 ± 1.4 mg/kg per minute; control vs. misalignment; P = 0.024). Fasting glucose and free fatty acid levels as well as sleeping metabolic rate were higher during circadian misalignment. Molecular analysis of skeletal muscle biopsies revealed that the molecular circadian clock was not aligned to the inverted behavioral cycle, and transcriptome analysis revealed the human PPAR pathway as a key player in the disturbed energy metabolism upon circadian misalignment. Our findings may provide a mechanism underlying the increased risk of type 2 diabetes among shift workers.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos/sangue , Perfilação da Expressão Gênica , Coração , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/sangue , Adulto , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Músculo Esquelético/patologia , Obesidade/patologia
4.
Eur J Nutr ; 59(5): 2039-2045, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31317217

RESUMO

PURPOSE: Lowering of LDL cholesterol levels by plant sterols and stanols is associated with decreased risk of cardiovascular disease in humans. Plant sterols and stanols also lower triacylglycerol (TG). However, it is not fully understood how reduction in TG is achieved and what the full potential of plant sterols and stanols is on whole-body metabolism. We here hypothesize that high levels of plant sterols and stanols stimulate whole-body energy expenditure, which can be attributed to changes in mitochondrial function of brown adipose tissue (BAT), skeletal muscle and liver. METHODS: Phytosterolemic mice were fed chow diets for 32 weeks to examine whole-body weight gain. In vitro, 24-h incubation were performed in adipocytes derived from human BAT, human myotubes or HepG2 human hepatocytes using sitosterol or sitostanol. Following mitochondrial function was assessed using seahorse bioanalyzer. RESULTS: Chow feeding in phytosterolemic mice resulted in diminished increase in body weight compared to control mice. In vitro, sitosterol or sitostanol did not change mitochondrial function in adipocytes derived from human BAT or in cultured human myotubes. Interestingly, maximal mitochondrial function in HepG2 human hepatocytes was decreased following sitosterol or sitostanol incubation, however, only when mitochondrial function was assessed in low glucose-containing medium. CONCLUSIONS: Beneficial in vivo effects of plant sterols and stanols on lipid and lipoprotein metabolism are well recognized. Our results indicate that alterations in human mitochondrial function are apparently not involved to explain these beneficial effects.


Assuntos
Fitosteróis , Sitosteroides , Adipócitos Marrons , Animais , Hepatócitos , Humanos , Camundongos , Mitocôndrias , Fibras Musculares Esqueléticas , Respiração
5.
Diabetologia ; 62(1): 112-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30377712

RESUMO

AIMS/HYPOTHESIS: Individuals of South Asian origin are at increased risk of developing type 2 diabetes mellitus and associated comorbidities compared with Europids. Disturbances in energy metabolism may contribute to this increased risk. Skeletal muscle and possibly also brown adipose tissue (BAT) are involved in human energy metabolism and nitric oxide (NO) is suggested to play a pivotal role in regulating mitochondrial biogenesis in both tissues. We aimed to investigate the effects of 6 weeks of supplementation with L-arginine, a precursor of NO, on energy metabolism by BAT and skeletal muscle, as well as glucose metabolism in South Asian men compared with men of European descent. METHODS: We included ten Dutch South Asian men (age 46.5 ± 2.8 years, BMI 30.1 ± 1.1 kg/m2) and ten Dutch men of European descent, that were similar with respect to age and BMI, with prediabetes (fasting plasma glucose level 5.6-6.9 mmol/l or plasma glucose levels 2 h after an OGTT 7.8-11.1 mmol/l). Participants took either L-arginine (9 g/day) or placebo orally for 6 weeks in a randomised double-blind crossover study. Participants were eligible to participate in the study when they were aged between 40 and 55 years, had a BMI between 25 and 35 kg/m2 and did not have type 2 diabetes. Furthermore, ethnicity was defined as having four grandparents of South Asian or white European origin, respectively. Blinding of treatment was done by the pharmacy (Hankintatukku) and an independent researcher from Leiden University Medical Center randomly assigned treatments by providing a coded list. All people involved in the study as well as participants were blinded to group assignment. After each intervention, glucose tolerance was determined by OGTT and basal metabolic rate (BMR) was determined by indirect calorimetry; BAT activity was assessed by cold-induced [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography-computed tomography scanning. In addition, a fasting skeletal muscle biopsy was taken and analysed ex vivo for respiratory capacity using a multisubstrate protocol. The primary study endpoint was the effect of L-arginine on BAT volume and activity. RESULTS: L-Arginine did not affect BMR, [18F]FDG uptake by BAT or skeletal muscle respiration in either ethnicity. During OGTT, L-arginine lowered plasma glucose concentrations (AUC0-2 h - 9%, p < 0.01), insulin excursion (AUC0-2 h - 26%, p < 0.05) and peak insulin concentrations (-26%, p < 0.05) in Europid but not South Asian men. This coincided with enhanced cold-induced glucose oxidation (+44%, p < 0.05) in Europids only. Of note, in skeletal muscle biopsies several respiration states were consistently lower in South Asian men compared with Europid men. CONCLUSIONS/INTERPRETATION: L-Arginine supplementation does not affect BMR, [18F]FDG uptake by BAT, or skeletal muscle mitochondrial respiration in Europid and South Asian overweight and prediabetic men. However, L-arginine improves glucose tolerance in Europids but not in South Asians. Furthermore, South Asian men have lower skeletal muscle oxidative capacity than men of European descent. FUNDING: This study was funded by the EU FP7 project DIABAT, the Netherlands Organization for Scientific Research, the Dutch Diabetes Research Foundation and the Dutch Heart Foundation. TRIAL REGISTRATION: ClinicalTrials.gov NCT02291458.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Arginina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Adulto , Glicemia , Índice de Massa Corporal , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Estado Pré-Diabético , Termogênese/efeitos dos fármacos
6.
Eur J Nucl Med Mol Imaging ; 46(7): 1428-1438, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30859432

RESUMO

PURPOSE: We aimed to investigate the influence of both hypothyroidism and thyroid-stimulating hormone (TSH) suppression on vascular inflammation, as assessed with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT). METHODS: Ten thyroid carcinoma patients underwent an 18F-FDG PET/CT during post-thyroidectomy hypothyroidism and during thyrotropin (TSH) suppression after 131I (radioiodine) ablation therapy. We analysed the 18F-FDG uptake in the carotids, aortic arch, ascending, descending, and abdominal aorta to investigate the effects of thyroid hormone status on arterial inflammation. Target-to-background ratios (TBRs) corrected for blood pool activity were established for all arterial territories. Results were further compared to euthyroid historic control subjects. RESULTS: In general, there was a trend towards higher vascular TBRs during TSH suppression than during hypothyroidism (TBRmax all vessels = 1.6 and 1.8, respectively, p = 0.058), suggesting a higher degree of arterial inflammation. In concurrence with this, we found increased C-reactive protein (CRP) levels after levothyroxine treatment (CRP = 2.9 mg/l and 4.8 mg/l, p = 0.005). An exploratory comparison with euthyroid controls showed significant higher TBRs during TSH suppression for the carotids, aortic arch, thoracic descending aorta, and when all vascular territories were combined (TBRmaxp = 0.013, p = 0.016, p = 0.030 and p = 0.018 respectively). CONCLUSIONS: Arterial inflammation is increased during TSH suppression. This finding sheds new light on the underlying mechanism of the suspected increased risk of cardiovascular disease in patients with TSH suppression.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/terapia , Tireotropina/antagonistas & inibidores , Adulto , Idoso , Arterite , Proteína C-Reativa/análise , Feminino , Fluordesoxiglucose F18 , Humanos , Hipotireoidismo/complicações , Hipotireoidismo/diagnóstico por imagem , Hipotireoidismo/etiologia , Inflamação/complicações , Radioisótopos do Iodo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Compostos Radiofarmacêuticos , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Tiroxina/uso terapêutico
7.
Handb Exp Pharmacol ; 251: 283-298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29725775

RESUMO

The role of brown adipose tissue (BAT) in non-shivering thermogenesis is well established in animals. BAT is activated following cold exposure, resulting in non-shivering thermogenesis, to ensure a constant body temperature. In mitochondria of brown adipocytes, glucose and fatty acids are used as substrate for uncoupling resulting in heat production. Activated BAT functions as a sink for glucose and fatty acids and this hallmark has designated BAT a target in the fight against metabolic diseases like type 2 diabetes mellitus and obesity. In order to make valid claims regarding BAT activity in humans, BAT activity needs to be quantified. The combination of positron emission tomography (PET) and computer tomography (CT) analysis is currently the most frequently used imaging technique to determine BAT activity in humans. Here, we will discuss the history of PET/CT and radioisotopes used to determine BAT activity in humans. Moreover, we will assess how PET/CT is used to determine BAT activity following cold and exercise.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Baixa , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
8.
J Therm Biol ; 84: 439-450, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31466784

RESUMO

The quality of local skin temperature prediction by thermophysiological models depends on the local skin blood flow (SBF) control functions. These equations were derived for low activity levels (0.8-1met) and mostly in sitting or supine position. This study validates and discusses the prediction of foot SBF during activities of 1-3met in male and females, and the effect on the foot skin temperature prediction (ΔTskin,foot) using the thermophysiological simulation model ThermoSEM. The SBF at the foot was measured for ten male and ten female human subjects at baseline and during three activities (sitting, walking at 1km/h, preferred walking around 3km/h). Additional measurements included the energy expenditure, local skin temperatures (Tskin,loc), environmental conditions and body composition. Measured, normalized foot SBF is 2-8 times higher than the simulated SBF during walking sessions. Also, SBF increases are significantly higher in females vs. males (preferred walking: 4.8±1.5 versus 2.7±1.4, P < 0.05). The quality of ΔTskin,foot using the simulated foot SBF is poor (median deviation is -4.8°C, maximumumdeviationis-6°C). Using the measured SBF in ThermoSEM results in an improved local skin temperature prediction (new maximum deviation is -3.3°C). From these data a new SBF model was developed that includes the walking activity level and gender, and improves SBF prediction and ΔTskin,foot of the thermophysiological model. Accurate SBF and local skin temperature predictions are beneficial in optimizing thermal comfort simulations in the built environment, and might also be applied in sport science or patient's temperature management.


Assuntos
Modelos Biológicos , Temperatura Cutânea , Pele/irrigação sanguínea , Caminhada/fisiologia , Adolescente , Adulto , Feminino , , Humanos , Masculino , Fluxo Sanguíneo Regional , Caracteres Sexuais , Adulto Jovem
9.
Diabetologia ; 59(11): 2269-2279, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27591854

RESUMO

In our westernised society, the level of physical activity is low. Interventions that increase energy expenditure are generally associated with an improvement in metabolic health. Exercise and exercise training increase energy metabolism and are considered to be among the best strategies for prevention of type 2 diabetes mellitus. More recently, cold exposure has been suggested to have a therapeutic value in type 2 diabetes. At a cellular level, there is evidence that increasing the turnover of cellular substrates such as fatty acids is associated with preventive effects against lipid-induced insulin resistance. Cellular energy sensors may underlie the effects linking energy turnover with metabolic health effects. Here we review data supporting the hypothesis that increasing energy and substrate turnover has beneficial effects on insulin sensitivity and should be considered a target for the prevention and treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Tipo 2/prevenção & controle , Metabolismo Energético/fisiologia , Humanos , Termogênese/fisiologia
10.
Handb Exp Pharmacol ; 233: 301-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26003832

RESUMO

Since 2009, the presence of brown adipose tissue (BAT) in adult humans has been irrefutably proven. It is estimated that active BAT can contribute up to 2.5-5% of resting metabolic rate in humans, suggesting that sustained activation of BAT may alleviate obesity and associated disorders. In the current chapter, the discovery of BAT in adult humans will be discussed. Furthermore, the characteristics of human BAT, methods to visualize the tissue as well as physiological and pharmacological methods to enhance its activity will be stressed.


Assuntos
Tecido Adiposo Marrom/fisiologia , Aclimatação , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Cintilografia , Termogênese
11.
Diabetologia ; 58(8): 1704-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957230

RESUMO

The recent recognition that humans possess active depots of brown adipose tissue has boosted the interest in this tissue as a potential target for the prevention and treatment of obesity and related metabolic disorders. Furthermore, it was also revealed that brown adipose tissue (BAT) in humans may consist of so-called beige or brite adipocytes. So far, cold exposure is recognised as the strongest activator of BAT in humans, but there is much ongoing research focused on finding alternative activators of BAT. The consequences of long-term BAT activation and/or cold exposure on metabolic health are still unknown, and this represents an area of intensive research. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).


Assuntos
Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Termogênese/fisiologia , Animais , Metabolismo Energético/fisiologia , Humanos , Obesidade/metabolismo
12.
Diabetologia ; 58(3): 586-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25500952

RESUMO

AIMS/HYPOTHESIS: Human brown adipose tissue (BAT) has recently emerged as a potential target in the treatment of type 2 diabetes, owing to its capacity to actively clear glucose from the circulation­at least upon cold exposure. The effects of insulin resistance on the capacity of human BAT to take up glucose are unknown. Prolonged fasting is known to induce insulin resistance in peripheral tissues in order to spare glucose for the brain. METHODS: We studied the effect of fasting-induced insulin resistance on the capacity of BAT to take up glucose during cold exposure as well as on cold-stimulated thermogenesis. BAT glucose uptake was assessed by means of cold-stimulated dynamic 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/computed tomography ([(18)F]FDG-PET/CT) imaging. RESULTS: We show that a 54 h fasting period markedly decreases both cold-induced BAT glucose uptake and nonshivering thermogenesis (NST) during cold stimulation. In vivo molecular imaging and modelling revealed that the reduction of glucose uptake in BAT was due to impaired cellular glucose uptake and not due to decreased supply. Interestingly, decreased BAT glucose uptake upon fasting was related to a decrease in core temperature during cold exposure, pointing towards a role for BAT in maintaining normothermia in humans. CONCLUSIONS/INTERPRETATION: Cold-stimulated glucose uptake in BAT is strongly reduced upon prolonged fasting. When cold-stimulated glucose uptake in BAT is also reduced under other insulin-resistant states, such as diabetes, cold-induced activation of BAT may not be a valid way to improve glucose clearance by BAT under such conditions. TRIAL REGISTRATION: www.trialregister.nl NTR3523 FUNDING: This work was supported by the EU FP7 project DIABAT (HEALTH-F2-2011-278373 to WDvML) and by the Netherlands Organization for Scientific Research (TOP 91209037 to WDvML).


Assuntos
Tecido Adiposo Marrom/metabolismo , Jejum/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Adolescente , Adulto , Transporte Biológico/fisiologia , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Tomografia por Emissão de Pósitrons , Termogênese/fisiologia , Adulto Jovem
13.
Biochim Biophys Acta ; 1831(5): 1004-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23274235

RESUMO

Human adults have functionally active BAT. The metabolic function can be reliably measured in vivo using modern imaging modalities (namely PET/CT). Cold seems to be one of the most potent stimulators of BAT metabolic activity but other stimulators (for example insulin) are actively studied. Obesity is related to lower metabolic activity of BAT but it may be reversed after successful weight reduction such as after bariatric surgery. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.


Assuntos
Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Insulina/metabolismo , Metabolismo dos Lipídeos , Tecido Adiposo Marrom/patologia , Adulto , Humanos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fenótipo , Transdução de Sinais
14.
Am J Physiol Regul Integr Comp Physiol ; 307(2): R103-13, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24871967

RESUMO

The relevance of functional brown adipose tissue (BAT) depots in human adults was undisputedly proven approximately seven years ago. Here we give an overview of all dedicated studies that were published on cold-induced BAT activity in adult humans that appeared since then. Different cooling protocols and imaging techniques to determine BAT activity are reviewed. BAT activation can be achieved by means of air- or water-cooling protocols. The most promising approach is individualized cooling, during which subjects are studied at the lowest temperature for nonshivering condition, probably revealing maximal nonshivering thermogenesis. The highest BAT prevalence (i.e., close to 100%) is observed using the individualized cooling protocol. Currently, the most widely used technique to study the metabolic activity of BAT is deoxy-2-[18F]fluoro-d-glucose ([18F]FDG)-positron emission tomography/computed tomography (PET/CT) imaging. Dynamic imaging provides quantitative information about glucose uptake rates, whereas static imaging reflects overall BAT glucose uptake, localization, and distribution. In general, standardized uptake values (SUV) are used to quantify BAT activity. An accurate determination of total BAT volume is hampered by the limited spatial resolution of the PET image, leading to spillover. Different research groups use different SUV threshold values, which make it difficult to directly compare BAT activity levels between studies. Another issue is the comparison of [18F]FDG uptake in BAT with respect to other tissues or upon with baseline values. This comparison can be performed by using the "fixed volume" methodology. Finally, the potential use of other relatively noninvasive methods to quantify BAT, like magnetic resonance imaging or thermography, is discussed.


Assuntos
Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Adulto , Animais , Transporte Biológico/fisiologia , Temperatura Baixa , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
16.
N Engl J Med ; 360(15): 1500-8, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19357405

RESUMO

BACKGROUND: Studies in animals indicate that brown adipose tissue is important in the regulation of body weight, and it is possible that individual variation in adaptive thermogenesis can be attributed to variations in the amount or activity of brown adipose tissue. Until recently, the presence of brown adipose tissue was thought to be relevant only in small mammals and infants, with negligible physiologic relevance in adult humans. We performed a systematic examination of the presence, distribution, and activity of brown adipose tissue in lean and obese men during exposure to cold temperature. Brown-adipose-tissue activity was studied in relation to body composition and energy metabolism. METHODS: We studied 24 healthy men--10 who were lean (body-mass index [BMI] [the weight in kilograms divided by the square of the height in meters], < 25) and 14 who were overweight or obese (BMI, > or = 25)--under thermoneutral conditions (22 degrees C) and during mild cold exposure (16 degrees C). Putative brown-adipose-tissue activity was determined with the use of integrated (18)F-fluorodeoxyglucose positron-emission tomography and computed tomography. Body composition and energy expenditure were measured with the use of dual-energy x-ray absorptiometry and indirect calorimetry. RESULTS: Brown-adipose-tissue activity was observed in 23 of the 24 subjects (96%) during cold exposure but not under thermoneutral conditions. The activity was significantly lower in the overweight or obese subjects than in the lean subjects (P=0.007). BMI and percentage of body fat both had significant negative correlations with brown adipose tissue, whereas resting metabolic rate had a significant positive correlation. CONCLUSIONS: The percentage of young men with brown adipose tissue is high, but its activity is reduced in men who are overweight or obese. Brown adipose tissue may be metabolically important in men, and the fact that it is reduced yet present in most overweight or obese subjects may make it a target for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Sobrepeso/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Adiposidade/fisiologia , Adolescente , Adulto , Índice de Massa Corporal , Temperatura Baixa , Fluordesoxiglucose F18/farmacocinética , Humanos , Masculino , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Análise de Regressão , Adulto Jovem
17.
Artif Organs ; 36(9): 797-811, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22747849

RESUMO

Intradialytic hypotension (IDH) is one of the most common complications of hemodialysis (HD) treatment. The initiating factor of IDH is a decrease in blood volume, which is related to an imbalance between ultrafiltration (UF) and refilling rate. Impaired reactivity of resistance and capacitance vessels in reaction to hypovolemia plays possibly a major role in the occurrence of IDH. These vessels also fulfill an important function in body temperature regulation. UF-induced cutaneous vasoconstriction would result in a reduced surface heat loss and an increase in core temperature. To release body heat, skin blood flow is increased at a later stage of the HD treatment, whereby possibly IDH can occur. The aim of the study is to develop a mathematical model that can provide insight into the impact of thermoregulatory processes on the cardiovascular (CV) system during HD treatment. The mathematical procedure has been created by coupling a thermo-physiological model with a CV model to study regulation mechanisms in the human body during HD + UF. Model simulations for isothermal versus thermoneutral HD + UF were compared with measurement data of patients on chronic intermittent HD (n = 13). Core temperature during simulated HD + UF sessions increased within the range of measurement data (0.23°C vs. 0.32 ± 0.41°C). The model showed a decline in mean arterial pressure of -7% for thermoneutral HD + UF versus -4% for isothermal HD + UF after 200 min during which relative blood volume changed by -13%. In conclusion, simulation results of the combined model show possibilities for predicting circulatory and thermal responses during HD + UF.


Assuntos
Regulação da Temperatura Corporal , Hemodinâmica , Diálise Renal/efeitos adversos , Adulto , Idoso , Pressão Arterial , Volume Sanguíneo , Sistema Cardiovascular/fisiopatologia , Simulação por Computador , Humanos , Hipotensão/etiologia , Hipotensão/fisiopatologia , Pessoa de Meia-Idade , Modelos Cardiovasculares
18.
Nuklearmedizin ; 61(1): 33-41, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34918332

RESUMO

PURPOSE: Resveratrol has shown promising anti-inflammatory effects in in vitro and animal studies. We aimed to investigate this effect on arterial inflammation in vivo. METHODS: This was an additional analysis of a double-blind randomized crossover trial which included eight male subjects with decreased insulin sensitivity who underwent an 18F-fluoroxyglucose (18F-FDG) PET/CT after 34 days of placebo and resveratrol treatment (150 mg/day). 18F-FDG uptake was analyzed in the carotid arteries and the aorta, adipose tissue regions, spleen, and bone marrow as measures for arterial and systemic inflammation. Maximum target-to-background ratios (TBRmax) were compared between resveratrol and placebo treatment with the non-parametric Wilcoxon signed-rank test. Median values are shown with their interquartile range. RESULTS: Arterial 18F-FDG uptake was non-significantly higher after resveratrol treatment (TBRmax all vessels 1.7 (1.6-1.7)) in comparison to placebo treatment (1.5 (1.4-1.6); p=0.050). Only in visceral adipose tissue, the increase in 18F-FDG uptake after resveratrol reached statistical significance (p=0.024). Furthermore, CRP-levels were not significantly affected by resveratrol treatment (p=0.091). CONCLUSIONS: Resveratrol failed to attenuate arterial or systemic inflammation as measured with 18F-FDG PET in subjects at risk of developing type 2 diabetes. However, validation of these findings in larger human studies is needed.


Assuntos
Arterite , Diabetes Mellitus Tipo 2 , Arterite/diagnóstico por imagem , Arterite/tratamento farmacológico , Estudos Cross-Over , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fluordesoxiglucose F18 , Humanos , Inflamação/tratamento farmacológico , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Resveratrol/uso terapêutico
19.
J Cachexia Sarcopenia Muscle ; 13(2): 1329-1338, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166050

RESUMO

BACKGROUND: Brown adipose tissue (BAT) has been primarily researched as a potential target for mitigating obesity. However, the physiological significance of BAT in relation to cachexia remains poorly understood. The objective of this study was to investigate the putative contribution of BAT on different components of energy metabolism in emphysematous chronic obstructive pulmonary disease (COPD) patients. METHODS: Twenty COPD patients (mean ± SD age 62 ± 6, 50% female, median [range] BMI 22.4 [15.1-32.5] kg/m2 and 85% low FFMI) were studied. Basal metabolic rate (BMR) was assessed by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water and physical activity by triaxial accelerometry. BMR was adjusted for fat-free mass (FFM) as assessed by deuterium dilution. Analysis of BAT and WAT was conducted in a subset of ten patients and six age-matched, gender-matched and BMI-matched healthy controls. BAT glucose uptake was assessed by means of cold-stimulated integrated [18F]FDG positron-emission tomography and magnetic resonance imaging. WAT was collected from subcutaneous abdominal biopsies to analyse metabolic and inflammatory gene expression levels. Lung function was assessed by spirometry and body plethysmography and systemic inflammation by high sensitivity C-reactive protein. RESULTS: Mean TDEE was 2209 ± 394 kcal/day, and mean BMR was 1449 ± 214 kcal/day corresponding to 120% of predicted. FFM-adjusted BMR did not correlate with lung function or C-reactive protein. Upon cooling, energy expenditure increased, resulting in a non-shivering thermogenesis of (median [range]) 20.1% [3.3-41.3] in patients and controls. Mean BAT glucose uptake was comparable between COPD and controls (1.5 [0.1-6.2] vs. 1.1 [0.7-3.9]). In addition, no correlation was found between BMR adjusted for FFM and BAT activity or between cold-induced non-shivering energy expenditure and BAT activity. Gene expression levels of the brown adipocyte or beige markers were also comparable between the groups. No (serious) adverse events were reported. CONCLUSIONS: Although COPD patients were hypermetabolic at rest, no correlation was found between BMR or TDEE and BAT activity. Furthermore, both BAT activity and gene expression levels of the brown adipocyte or beige markers were comparable between COPD patients and controls.


Assuntos
Tecido Adiposo Marrom , Doença Pulmonar Obstrutiva Crônica , Tecido Adiposo Marrom/metabolismo , Idoso , Metabolismo Energético , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Termogênese/genética
20.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R285-96, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21490370

RESUMO

The incidence of the metabolic syndrome has reached epidemic levels in the Western world. With respect to the energy balance, most attention has been given to reducing energy (food) intake. Increasing energy expenditure is an important alternative strategy. Facultative thermogenesis, which is the increase in energy expenditure in response to cold or diet, may be an effective way to affect the energy balance. The recent identification of functional brown adipose tissue (BAT) in adult humans promoted a renewed interest in nonshivering thermogenesis (NST). The purpose of this review is to highlight the recent insight in NST, general aspects of its regulation, the major tissues involved, and its metabolic consequences. Sustainable NST in adult humans amounts to 15% of the average daily energy expenditure. Calculations based on the limited available literature show that BAT thermogenesis can amount to 5% of the basal metabolic rate. It is likely that at least a substantial part of NST can be attributed to BAT, but it is possible that other tissues contribute to NST. Several studies on mitochondrial uncoupling indicate that skeletal muscle is another potential contributor to facultative thermogenesis in humans. The general and synergistic role of the sympathetic nervous system and the thyroid axis in relation to NST is discussed. Finally, perspectives on BAT and skeletal muscle NST are given.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Estremecimento/fisiologia , Temperatura Baixa , Dieta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA