Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672696

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting many individuals worldwide with no effective treatment to date. AD is characterized by the formation of senile plaques and neurofibrillary tangles, followed by neurodegeneration, which leads to cognitive decline and eventually death. INTRODUCTION: In AD, pathological changes occur many years before disease onset. Since disease-modifying therapies may be the most beneficial in the early stages of AD, biomarkers for the early diagnosis and longitudinal monitoring of disease progression are essential. Multiple imaging techniques with associated biomarkers are used to identify and monitor AD. AIM: In this review, we discuss the contemporary early diagnosis and longitudinal monitoring of AD with imaging techniques regarding their diagnostic utility, benefits and limitations. Additionally, novel techniques, applications and biomarkers for AD research are assessed. FINDINGS: Reduced hippocampal volume is a biomarker for neurodegeneration, but atrophy is not an AD-specific measure. Hypometabolism in temporoparietal regions is seen as a biomarker for AD. However, glucose uptake reflects astrocyte function rather than neuronal function. Amyloid-ß (Aß) is the earliest hallmark of AD and can be measured with positron emission tomography (PET), but Aß accumulation stagnates as disease progresses. Therefore, Aß may not be a suitable biomarker for monitoring disease progression. The measurement of tau accumulation with PET radiotracers exhibited promising results in both early diagnosis and longitudinal monitoring, but large-scale validation of these radiotracers is required. The implementation of new processing techniques, applications of other imaging techniques and novel biomarkers can contribute to understanding AD and finding a cure. CONCLUSIONS: Several biomarkers are proposed for the early diagnosis and longitudinal monitoring of AD with imaging techniques, but all these biomarkers have their limitations regarding specificity, reliability and sensitivity. Future perspectives. Future research should focus on expanding the employment of imaging techniques and identifying novel biomarkers that reflect AD pathology in the earliest stages.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Diagnóstico Precoce , Neuroimagem , Doença de Alzheimer/patologia , Amiloide/metabolismo , Biomarcadores/metabolismo , Humanos , Estudos Longitudinais
2.
Front Pharmacol ; 15: 1372109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783936

RESUMO

The prostaglandin transporter (PGT, SLCO2A1) mediates transport of prostanoids (a.o. prostaglandin E2 (PGE2)) into cells and thereby promotes their degradation. Overexpression of PGT leads to low extracellular PGE2 levels and has been linked to impaired wound healing of diabetic foot ulcers. Inhibition of PGT could thus be beneficial, however, no PGT inhibitors are currently on the market and drug discovery efforts are hampered by lack of high-through screening assays for this transporter. Here we report on a label-free impedance-based assay for PGT that measures transport activity through receptor activation (TRACT) utilizing prostaglandin E2 receptor subtype EP3 and EP4 that are activated by PGE2. We found that induction of PGT expression on HEK293-JumpIn-SLCO2A1 cells that also express EP3 and EP4 leads to an over 10-fold reduction in agonistic potency of PGE2. PGE2 potency could be recovered upon inhibition of PGT-mediated PGE2 uptake with PGT inhibitors olmesartan and T26A, the potency of which could be established as well. Moreover, the TRACT assay enabled the assessment of transport function of PGT natural variants. Lastly, HUVEC cells endogenously expressing prostanoid receptors and PGT were exploited to study wound healing properties of PGE2 and T26A in real-time using a novel impedance-based scratch-induced wound healing assay. These novel impedance-based assays will advance PGT drug discovery efforts and pave the way for the development of PGT-based therapies.

3.
Sci Rep ; 11(1): 12290, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112854

RESUMO

The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.


Assuntos
Fluoxetina/análogos & derivados , Ensaios de Triagem em Larga Escala , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Técnicas Biossensoriais , Dopamina/metabolismo , Doxiciclina/farmacologia , Epinefrina/metabolismo , Fluoxetina/química , Fluoxetina/isolamento & purificação , Humanos , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA