RESUMO
Monolayer 2D semiconductors, such as WS2, exhibit uniquely strong light-matter interactions due to exciton resonances that enable atomically thin optical elements. Similar to geometry-dependent plasmon and Mie resonances, these intrinsic material resonances offer coherent and tunable light scattering. Thus far, the impact of the excitons' temporal dynamics on the performance of such excitonic metasurfaces remains unexplored. Here, we show how the excitonic decay rates dictate the focusing efficiency of an atomically thin lens carved directly out of exfoliated monolayer WS2. By isolating the coherent exciton radiation from the incoherent background in the focus of the lens, we obtain a direct measure of the role of exciton radiation in wavefront shaping. Furthermore, we investigate the influence of exciton-phonon scattering by characterizing the focusing efficiency as a function of temperature, demonstrating an increased optical efficiency at cryogenic temperatures. Our results provide valuable insights into the role of excitonic light scattering in 2D nanophotonic devices.
RESUMO
Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.
RESUMO
Plasmonic antennas and metasurfaces can effectively control light-matter interactions, and this facilitates a deterministic design of optical materials properties, including structural color. However, these optical properties are generally fixed after synthesis and fabrication, while many modern-day optics applications require active, low-power, and nonvolatile tuning. These needs have spurred broad research activities aimed at identifying materials and resonant structures capable of achieving large, dynamic changes in optical properties, especially in the challenging visible spectral range. In this work, we demonstrate dynamic tuning of polarization-dependent gap plasmon resonators that contain the electrochromic oxide WO3. Its refractive index in the visible changes continuously from n = 2.1 to 1.9 upon electrochemical lithium insertion and removal in a solid-state device. By incorporating WO3 into a gap plasmon resonator, the resonant wavelength can be shifted continuously and reversibly by up to 58 nm with less than 2 V electrochemical bias voltage. The resonator can remain in a tuned state for tens of minutes under open circuit conditions.
RESUMO
We study two-dimensional hexagonal photonic lattices of silicon Mie resonators with a topological optical band structure in the visible spectral range. We use 30 keV electrons focused to nanoscale spots to map the local optical density of states in topological photonic lattices with deeply subwavelength resolution. By slightly shrinking or expanding the unit cell, we form hexagonal superstructures and observe the opening of a band gap and a splitting of the double-degenerate Dirac cones, which correspond to topologically trivial and nontrivial phases. Optical transmission spectroscopy shows evidence of topological edge states at the domain walls between topological and trivial lattices.
RESUMO
The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.
RESUMO
Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (â¼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to â¼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.
RESUMO
The reflection of incident sunlight by photovoltaic modules prevents them from reaching their theoretical energy conversion limit. We explore the effectiveness of a universal external light trap that can tackle this reflection loss. A unique feature of external light traps is their capability to simultaneously recycle various broadband sources of reflection on the module level, such as the reflection from the metal front grid, the front interfaces, the reflective backside of the cell, and the white back sheet. The reflected light is recycled in the space between the solar cell and a mirror above the solar cell. A concentrator funnels the light into this cage through a small aperture in the mirror. As a proof-of-principle experiment, a significant reflectance reduction of a bare crystalline silicon (c-Si) photodiode is demonstrated. In contrast to conventional light trapping methods, external light trapping does not induce any damage to the active solar cell material. Moreover, this is a universally applicable technology that enables the use of thin and planar solar cells of superior electrical quality that were so far hindered by limited optical absorption. We considered several trap designs and identified fabrication issues. A series of prototype millimeter-scale external metal light traps were milled and applied on an untextured c-Si photodiode, which is used as a model for future thin solar cells. We determined the concentrator transmittance and analyzed the effect of both the concentration factor and cage height on the absorptance and spatial intensity distribution on the surface of the solar cell. This relatively simple and comprehensive light management solution can be a promising candidate for highly efficient solar modules using thin c-Si solar cells.
RESUMO
We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.
RESUMO
We demonstrate an effective nanopatterned antireflection coating on glass that is based on sol-gel chemistry and large-area substrate-conformal soft-imprint technology. The printed 120 nm tall silica nanocylinders with a diameter of 245 nm in a square array with 325 nm pitch form an effective-index (n = 1.20) antireflection coating that reduces the double-sided reflection from a borosilicate glass slide from 7.35% to 0.57% (averaged over the visible spectral range) with a minimum reflectance <0.05% at 590 nm. The nanoglass coating is made using a simple process involving only spin-coating and an imprint step, without vacuum technology or annealing required. The refractive index of the nanoglass layers can be tailored over a broad range by controlling the geometry (1.002 < n < 1.44 in theory), covering a wide range that is not achievable with natural materials. We demonstrate that the nanoglass coating effectively eliminates glare from smart-phone display windows and significantly improves the efficiency of glass-encapsulated solar cells. These features, that are achieved over an angular range as wide as ±50°, together with strong hydrophobicity and mechanical durability, make nanoglass coatings a promising technology to improve the functionality of optoelectronic devices based on glass encapsulation.
RESUMO
We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and a pitch of 500, 700, and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 Ω/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations, we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For the latter, we discuss the general design principles to use the nanowire electrodes also as a light trapping scheme.
Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Propriedades de SuperfícieRESUMO
Effective photon management is critical to realize high power conversion efficiencies for thin crystalline silicon (c-Si) solar cells. Standard few-100-µm-thick bulk cells achieve light trapping with macroscopic surface textures covered by thin, continuous antireflection coatings. Such sizeable textures are challenging to implement on ultrathin cells. Here, it is illustrated how nanoscale Mie-resonator-arrays with a bimodal size distribution support multiple resonances that can work in concert to achieve simultaneous antireflection and light-trapping across the broad solar spectrum. The effectiveness of these light-trapping antireflection coatings is experimentally demonstrated on a 2.8 µm-thick c-Si solar cell. The measured short-circuit current and corresponding power conversion efficiency are notably improved, achieving efficiencies as high as 11.2%. Measurements of the saturation current density on completed cells indicate that thermal oxides can effectively limit surface recombination. The presented design principles are applicable to a wide range of solar cells.
RESUMO
Rhenium disulfide, a member of the transition metal dichalcogenide family of semiconducting materials, is unique among 2D van der Waals materials due to its anisotropy and, albeit weak, interlayer interactions, confining excitons within single atomic layers and leading to monolayer-like excitonic properties even in bulk crystals. While recent work has established the existence of two stacking modes in bulk, AA and AB, the influence of the different interlayer coupling on the excitonic properties has been poorly explored. Here, we use polarization-dependent optical measurements to elucidate the nature of excitons in AA and AB-stacked rhenium disulfide to obtain insight into the effect of interlayer interactions. We combine polarization-dependent Raman with low-temperature photoluminescence and reflection spectroscopy to show that, while the similar polarization dependence of both stacking orders indicates similar excitonic alignments within the crystal planes, differences in peak width, position, and degree of anisotropy reveal a different degree of interlayer coupling. DFT calculations confirm the very similar band structure of the two stacking orders while revealing a change of the spin-split states at the top of the valence band to possibly underlie their different exciton binding energies. These results suggest that the excitonic properties are largely determined by in-plane interactions, however, strongly modified by the interlayer coupling. These modifications are stronger than those in other 2D semiconductors, making ReS2 an excellent platform for investigating stacking as a tuning parameter for 2D materials. Furthermore, the optical anisotropy makes this material an interesting candidate for polarization-sensitive applications such as photodetectors and polarimetry.
RESUMO
Passive radiative cooling is a method to dissipate excess heat from a material by the spontaneous emission of infrared thermal radiation. For a solar cell, the challenge is to enhance PRC while retaining transparency for sunlight above the bandgap. Here, we design a hexagonal array of cylinders etched into the top surface of silica solar module glass to enhance passive radiative cooling. Multipolar Mie-like resonances in the cylinders are shown to cause antireflection effects in the infrared, which results in enhanced infrared emissivity. Using Fourier transform infrared spectrometry we measure the hemispherical reflectance of the fabricated structures and find the emissivity of the silica cylinder array in good correspondence with the simulated results. The microcylinder array increases the average emissivity between λ = 7.5-16 µm from 84.3% to 97.7%, without reducing visible light transmission.
RESUMO
We present a soft-stamping method to selectively print a homogenous layer of CdSeTe/ZnS core-shell quantum dots (QDs) on top of an array of Si nanocylinders with Mie-type resonant modes. Using this new method, we gain accurate control of the quantum dot's angular emission through engineered coupling of the QDs to these resonant modes. Using numerical simulations we show that the emission into or away from the Si substrate can be precisely controlled by the QD position on the nanocylinder. QDs centered on a 400 nm diameter nanocylinder surface show 98% emission directionality into the Si substrate. Alternatively, for homogenous ensembles placed over the nanocylinder top-surface, the upward emission is enhanced 10-fold for 150 nm diameter cylinders. Experimental PL intensity measurements corroborate the simulated trends with cylinder diameter. PL lifetime measurements reflect well the variations of the local density of states at the QD position due to coupling to the resonant cylinders. These results demonstrate that the soft imprint technique provides a unique manner to directly integrate optical emitters with a wide range of nanophotonic geometries, with potential applications in LEDs, luminescent solar concentrators, and up- and down-conversion schemes for improved photovoltaics.
RESUMO
The ability to manipulate light and liquids on integrated optofluidics chips has spurred a myriad of important developments in biology, medicine, chemistry and display technologies. Here we show how the convergence of optofluidics and metasurface optics can lead to conceptually new platforms for the dynamic control of light fields. We first demonstrate metasurface building blocks that display an extreme sensitivity in their scattering properties to their dielectric environment. These blocks are then used to create metasurface-based flat optics inside microfluidic channels where liquids with different refractive indices can be directed to manipulate their optical behaviour. We demonstrate the intensity and spectral tuning of metasurface colour pixels as well as on-demand optical elements. We finally demonstrate automated control in an integrated meta-optofluidic platform to open up new display functions. Combined with large-scale microfluidic integration, our dynamic-metasurface flat-optics platform could open up the possibility of dynamic display, imaging, holography and sensing applications.
Assuntos
Dispositivos Ópticos , Óptica e FotônicaRESUMO
Silicon nanoparticles (SiNPs) have been explored intensively for their use in applications requiring efficient fluorescence for LEDs, lasers, displays, photovoltaic spectral-shifting filters, and biomedical applications. High radiative rates are essential for such applications, and theoretically these could be achieved via quantum confinement and/or straining. Wet-chemical methods used to synthesize SiNPs are under scrutiny because of reported contamination by fluorescent carbon species. To develop a cleaner method, we utilize a specially designed attritor type high-energy ball-mill and use a high-purity (99.999%) Si microparticle precursor. The mechanochemical process is used under a continuous nitrogen gas atmosphere to avoid oxidation of the particles. We confirm the presence of quantum-confined NPs (<5 nm) using atomic force microscopy (AFM). Microphotoluminescence (PL) spectroscopy coupled to AFM confirms quantum-confined tunable red/near-infrared PL emission in SiNPs capped with an organic ligand (1-octene). Using micro-Raman-PL spectroscopy, we confirm SiNPs as the origin of the emission. These results demonstrate a facile and potentially scalable mechanochemical method of synthesis for contamination-free SiNPs.
RESUMO
Metasurface-based optical elements typically manipulate light waves by imparting space-variant changes in the amplitude and phase with a dense array of scattering nanostructures. The highly localized and low optical-quality-factor (Q) modes of nanostructures are beneficial for wavefront shaping as they afford quasi-local control over the electromagnetic fields. However, many emerging imaging, sensing, communication, display and nonlinear optics applications instead require flat, high-Q optical elements that provide substantial energy storage and a much higher degree of spectral control over the wavefront. Here, we demonstrate high-Q, non-local metasurfaces with atomically thin metasurface elements that offer notably enhanced light-matter interaction and fully decoupled optical functions at different wavelengths. We illustrate a possible use of such a flat optic in eye tracking for eyewear. Here, a metasurface patterned on a regular pair of eye glasses provides an unperturbed view of the world across the visible spectrum and redirects near-infrared light to a camera to allow imaging of the eye.
Assuntos
Tecnologia de Rastreamento Ocular , Luz , Nanoestruturas/química , Fenômenos Ópticos , Campos Eletromagnéticos , Humanos , Dispositivos Ópticos/tendências , Óptica e Fotônica/tendências , Propriedades de SuperfícieRESUMO
The ability of two nearly-touching plasmonic nanoparticles to squeeze light into a nanometer gap has provided a myriad of fundamental insights into light-matter interaction. In this work, we construct a nanoelectromechanical system (NEMS) that capitalizes on the unique, singular behavior that arises at sub-nanometer particle-spacings to create an electro-optical modulator. Using in situ electron energy loss spectroscopy in a transmission electron microscope, we map the spectral and spatial changes in the plasmonic modes as they hybridize and evolve from a weak to a strong coupling regime. In the strongly-coupled regime, we observe a very large mechanical tunability (~250 meV/nm) of the bonding-dipole plasmon resonance of the dimer at ~1 nm gap spacing, right before detrimental quantum effects set in. We leverage our findings to realize a prototype NEMS light-intensity modulator operating at ~10 MHz and with a power consumption of only 4 fJ/bit.
RESUMO
Silicon nanoparticles (Si-NPs) represent one of many types of nanomaterials, where the origin of emission is difficult to assess due to a complex interplay between the core and surface chemistry. Band-gap tunability in Si-NPs is predicted to span from the infrared to the ultraviolet spectral range, which is rarely observed in practice. In this work, we directly assess the size dependence of the optical band gap using a single-dot correlative microscopy tool, where the size of the individual NPs is measured using atomic force microscopy (AFM) and the optical band gap is evaluated from single-dot photoluminescence measured on the very same NPs. We analyze 2-8 nm alkyl-capped Si-NPs prepared by a sol-gel method, followed by annealing at 1300 °C. Surprisingly, we find that the optical band gap is given by the amorphous shell, as evidenced by the convergence of the optical band gap size dependence toward the amorphous Si band gap of â¼1.56 eV. We propose that the structural disorder might be the reason behind the often reported limited emission tunability from various Si-NPs in the literature. We believe that our message points toward a pressing need for development and broader use of such direct correlative single-dot microscopy methods to avoid possible misinterpretations that could arise from attempts to recover size-band gap relation from ensemble methods, as practiced nowadays.
RESUMO
Dielectric microcavities with quality factors (Q-factors) in the thousands to billions markedly enhance light-matter interactions, with applications spanning high-efficiency on-chip lasing, frequency comb generation and modulation and sensitive molecular detection. However, as the dimensions of dielectric cavities are reduced to subwavelength scales, their resonant modes begin to scatter light into many spatial channels. Such enhanced scattering is a powerful tool for light manipulation, but also leads to high radiative loss rates and commensurately low Q-factors, generally of order ten. Here, we describe and experimentally demonstrate a strategy for the generation of high Q-factor resonances in subwavelength-thick phase gradient metasurfaces. By including subtle structural perturbations in individual metasurface elements, resonances are created that weakly couple free-space light into otherwise bound and spatially localized modes. Our metasurface can achieve Q-factors >2,500 while beam steering light to particular directions. High-Q beam splitters are also demonstrated. With high-Q metasurfaces, the optical transfer function, near-field intensity and resonant line shape can all be rationally designed, providing a foundation for efficient, free-space-reconfigurable and nonlinear nanophotonics.