Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099962

RESUMO

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glicemia/metabolismo , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Insulina/metabolismo
2.
J Physiol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051503

RESUMO

Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.

3.
Diabetologia ; 63(6): 1211-1222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185462

RESUMO

AIMS/HYPOTHESIS: Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. METHODS: Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m2) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. RESULTS: In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14CO2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [14C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. CONCLUSIONS/INTERPRETATION: Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. TRIAL REGISTRATION: ClinicalTrial.gov NCT01576250. FUNDING: PS was supported by a 'VICI' Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).


Assuntos
Insulina/metabolismo , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Restrição Física/fisiologia , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
4.
Cardiovasc Diabetol ; 19(1): 129, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807203

RESUMO

BACKGROUND: Pericardial fat (PF) has been suggested to directly act on cardiomyocytes, leading to diastolic dysfunction. The aim of this study was to investigate whether a higher PF volume is associated with a lower diastolic function in healthy subjects. METHODS: 254 adults (40-70 years, BMI 18-35 kg/m2, normal left ventricular ejection fraction), with (a)typical chest pain (otherwise healthy) from the cardiology outpatient clinic were retrospectively included in this study. All patients underwent a coronary computed tomographic angiography for the measurement of pericardial fat volume, as well as a transthoracic echocardiography for the assessment of diastolic function parameters. To assess the independent association of PF and diastolic function parameters, multivariable linear regression analysis was performed. To maximize differences in PF volume, the group was divided in low (lowest quartile of both sexes) and high (highest quartile of both sexes) PF volume. Multivariable binary logistic analysis was used to study the associations within the groups between PF and diastolic function, adjusted for age, BMI, and sex. RESULTS: Significant associations for all four diastolic parameters with the PF volume were found after adjusting for BMI, age, and sex. In addition, subjects with high pericardial fat had a reduced left atrial volume index (p = 0.02), lower E/e (p < 0.01) and E/A (p = 0.01), reduced e' lateral (p < 0.01), reduced e' septal p = 0.03), compared to subjects with low pericardial fat. CONCLUSION: These findings confirm that pericardial fat volume, even in healthy subjects with normal cardiac function, is associated with diastolic function. Our results suggest that the mechanical effects of PF may limit the distensibility of the heart and thereby directly contribute to diastolic dysfunction. Trial registration NCT01671930.


Assuntos
Tecido Adiposo/fisiopatologia , Adiposidade , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Doenças Assintomáticas , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Estudos Transversais , Diástole , Ecocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pericárdio , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia
7.
Sci Rep ; 13(1): 8346, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221197

RESUMO

Cardiac energy status, measured as phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio with 31P-Magnetic Resonance Spectroscopy (31P-MRS) in vivo, is a prognostic factor in heart failure and is lowered in cardiometabolic disease. It has been suggested that, as oxidative phosphorylation is the major contributor to ATP synthesis, PCr/ATP ratio might be a reflection of cardiac mitochondrial function. The objective of the study was to investigate whether PCr/ATP ratios can be used as in vivo marker for cardiac mitochondrial function. We enrolled thirty-eight patients scheduled for open-heart surgery in this study. Cardiac 31P-MRS was performed before surgery. Tissue from the right atrial appendage was obtained during surgery for high-resolution respirometry for the assessment of mitochondrial function. There was no correlation between the PCr/ATP ratio and ADP-stimulated respiration rates (octanoylcarnitine R2 < 0.005, p = 0.74; pyruvate R2 < 0.025, p = 0.41) nor with maximally uncoupled respiration (octanoylcarnitine R2 = 0.005, p = 0.71; pyruvate R2 = 0.040, p = 0.26). PCr/ATP ratio did correlate with indexed LV end systolic mass. As no direct correlation between cardiac energy status (PCr/ATP) and mitochondrial function in the heart was found, the study suggests that mitochondrial function might not the only determinant of cardiac energy status. Interpretation should be done in the right context in cardiac metabolic studies.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Humanos , Fosfocreatina , Ácido Pirúvico
8.
Obesity (Silver Spring) ; 31(10): 2493-2504, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37670579

RESUMO

OBJECTIVE: Insulin resistance is characterized by ectopic fat accumulation leading to cardiac diastolic dysfunction and nonalcoholic fatty liver disease. The objective of this study was to determine whether treatment with the peroxisome proliferator-activated receptor-α (PPARα) agonist ciprofibrate has direct effects on cardiac and hepatic metabolism and can improve insulin sensitivity and cardiac function in insulin-resistant volunteers. METHODS: Ten insulin-resistant male volunteers received 100 mg/d of ciprofibrate and placebo for 5 weeks in a randomized double-blind crossover study. Insulin-stimulated metabolic rate of glucose (MRgluc) was measured using dynamic 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET). Additionally, cardiac function, whole-body insulin sensitivity, intrahepatic lipid content, skeletal muscle gene expression, 24-hour blood pressure, and substrate metabolism were measured. RESULTS: Whole-body insulin sensitivity, energy metabolism, and body composition were unchanged after ciprofibrate treatment. Ciprofibrate treatment decreased insulin-stimulated hepatic MRgluc and increased hepatic lipid content. Myocardial net MRgluc tended to decrease after ciprofibrate treatment, but ciprofibrate treatment had no effect on cardiac function and cardiac energy status. In addition, no changes in PPAR-related gene expression in muscle were found. CONCLUSIONS: Ciprofibrate treatment increased hepatic lipid accumulation and lowered MRgluc, without affecting whole-body insulin sensitivity. Furthermore, parameters of cardiac function or cardiac energy status were not altered upon ciprofibrate treatment.


Assuntos
Resistência à Insulina , Insulina , Masculino , Humanos , PPAR alfa , Estudos Cross-Over , Hipoglicemiantes , Músculo Esquelético , Fluordesoxiglucose F18 , Lipídeos
9.
Am J Physiol Heart Circ Physiol ; 302(3): H709-15, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101529

RESUMO

MRI has been proven to be an accurate method for noninvasive assessment of cardiac function. One of the current limitations of cardiac MRI is that it is time consuming. Therefore, various geometrical models are used, which can reduce scan and postprocessing time. It is unclear how appropriate their use is in rodents. Left ventricular (LV) volumes and ejection fraction (EF) were quantified based on 7.0 Tesla cine-MRI in 12 wild-type (WT) mice, 12 adipose triglyceride lipase knockout (ATGL(-/-)) mice (model of impaired cardiac function), and 11 rats in which we induced cardiac ischemia. The LV volumes and function were either assessed with parallel short-axis slices covering the full volume of the left ventricle (FV, gold standard) or with various geometrical models [modified Simpson rule (SR), biplane ellipsoid (BP), hemisphere cylinder (HC), single-plane ellipsoid (SP), and modified Teichholz Formula (TF)]. Reproducibility of the different models was tested and results were correlated with the gold standard (FV). All models and the FV data set provided reproducible results for the LV volumes and EF, with interclass correlation coefficients ≥0.87. All models significantly over- or underestimated EF, except for SR. Good correlation was found for all volumes and EF for the SR model compared with the FV data set (R(2) ranged between 0.59-0.95 for all parameters). The HC model and BP model also predicted EF well (R(2) ≥ 0.85), although proved to be less useful for quantitative analysis. The SP and TF models correlated poorly with the FV data set (R(2) ≥ 0.45 for EF and R(2) ≥ 0.29 for EF, respectively). For the reduction in acquisition and postprocessing time, only the SR model proved to be a valuable method for calculating LV volumes, stroke volume, and EF.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Volume Cardíaco/fisiologia , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/fisiopatologia , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Técnicas de Imagem Cardíaca/normas , Modelos Animais de Doenças , Modelos Lineares , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
10.
Nat Commun ; 13(1): 3508, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717342

RESUMO

Elevations in plasma branched-chain amino acid (BCAA) levels associate with insulin resistance and type 2 diabetes (T2D). Pre-clinical models suggest that lowering BCAA levels improve glucose tolerance, but data in humans are lacking. Here, we used sodium phenylbutyrate (NaPB), an accelerator of BCAA catabolism, as tool to lower plasma BCAA levels in patients with T2D, and evaluate its effect on metabolic health. This trial (NetherlandsTrialRegister: NTR7426) had a randomized, placebo-controlled, double-blind cross-over design and was performed in the Maastricht University Medical Center (MUMC+), the Netherlands, between February 2019 and February 2020. Patients were eligible for the trial if they were 40-75years, BMI of 25-38 kg/m², relatively well-controlled T2D (HbA1C < 8.5%) and treated with oral glucose-lowering medication. Eighteen participants were randomly assigned to receive either NaPB 4.8 g/m²/day and placebo for 2 weeks via controlled randomization and sixteen participants completed the study. The primary outcome was peripheral insulin sensitivity. Secondary outcomes were ex vivo muscle mitochondrial oxidative capacity, substrate oxidation and ectopic fat accumulation. Fasting blood samples were collected to determine levels of BCAA, their catabolic intermediates, insulin, triglycerides, free fatty acids (FFA) and glucose. NaPB led to a robust 27% improvement in peripheral insulin sensitivity compared to placebo (ΔRd:13.2 ± 1.8 vs. 9.6 ± 1.8 µmol/kg/min, p = 0.02). This was paralleled by an improvement in pyruvate-driven muscle mitochondrial oxidative capacity and whole-body insulin-stimulated carbohydrate oxidation, and a reduction in plasma BCAA and glucose levels. No effects were observed on levels of insulin, triglycerides and FFA, neither did fat accumulation in muscle and liver change. No adverse events were reported. These data establish the proof-of-concept in humans that modulating the BCAA oxidative pathway may represent a potential treatment strategy for patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados , Glucose/uso terapêutico , Humanos , Insulina , Resistência à Insulina/fisiologia , Triglicerídeos
11.
Diagnostics (Basel) ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35626357

RESUMO

Gliomas are the most frequent primary tumors of the brain. They can be divided into grade II-IV astrocytomas and grade II-III oligodendrogliomas, based on their histomolecular profile. The prognosis and treatment is highly dependent on grade and well-identified prognostic and/or predictive molecular markers. Multi-parametric MRI, including diffusion weighted imaging, perfusion, and MR spectroscopy, showed increasing value in the non-invasive characterization of specific molecular subsets of gliomas. Radiolabeled amino-acid analogues, such as 18F-FET, have also been proven valuable in glioma imaging. These tracers not only contribute in the diagnostic process by detecting areas of dedifferentiation in diffuse gliomas, but this technique is also valuable in the follow-up of gliomas, as it can differentiate pseudo-progression from real tumor progression. Since multi-parametric MRI and 18F-FET PET are complementary imaging techniques, there may be a synergistic role for PET-MRI imaging in the neuro-oncological imaging of primary brain tumors. This could be of value for both primary staging, as well as during treatment and follow-up.

12.
Cardiovasc Diabetol ; 10: 47, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21615922

RESUMO

BACKGROUND: Increased cardiac lipid content has been associated with diabetic cardiomyopathy. We recently showed that cardiac lipid content is reduced after 12 weeks of physical activity training in healthy overweight subjects. The beneficial effect of exercise training on cardiovascular risk is well established and the decrease in cardiac lipid content with exercise training in healthy overweight subjects was accompanied by improved ejection fraction. It is yet unclear whether diabetic patients respond similarly to physical activity training and whether a lowered lipid content in the heart is necessary for improvements in cardiac function. Here, we investigated whether exercise training is able to lower cardiac lipid content and improve cardiac function in type 2 diabetic patients. METHODS: Eleven overweight-to-obese male patients with type 2 diabetes mellitus (age: 58.4 ± 0.9 years, BMI: 29.9 ± 0.01 kg/m2) followed a 12-week training program (combination endurance/strength training, three sessions/week). Before and after training, maximal whole body oxygen uptake (VO2max) and insulin sensitivity (by hyperinsulinemic, euglycemic clamp) was determined. Systolic function was determined under resting conditions by CINE-MRI and cardiac lipid content in the septum of the heart by Proton Magnetic Resonance Spectroscopy. RESULTS: VO2max increased (from 27.1 ± 1.5 to 30.1 ± 1.6 ml/min/kg, p = 0.001) and insulin sensitivity improved upon training (insulin stimulated glucose disposal (delta Rd of glucose) improved from 5.8 ± 1.9 to 10.3 ± 2.0 µmol/kg/min, p = 0.02. Left-ventricular ejection fraction improved after training (from 50.5 ± 2.0 to 55.6 ± 1.5%, p = 0.01) as well as cardiac index and cardiac output. Unexpectedly, cardiac lipid content in the septum remained unchanged (from 0.80 ± 0.22% to 0.95 ± 0.21%, p = 0.15). CONCLUSIONS: Twelve weeks of progressive endurance/strength training was effective in improving VO2max, insulin sensitivity and cardiac function in patients with type 2 diabetes mellitus. However, cardiac lipid content remained unchanged. These data suggest that a decrease in cardiac lipid content in type 2 diabetic patients is not a prerequisite for improvements in cardiac function. TRIAL REGISTRATION: ISRCTN: ISRCTN43780395.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Cardiomiopatias Diabéticas/terapia , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Sobrepeso/terapia , Treinamento Resistido , Volume Sistólico , Função Ventricular Esquerda , Adiposidade , Peso Corporal , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Técnica Clamp de Glucose , Humanos , Resistência à Insulina , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Países Baixos , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Consumo de Oxigênio , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento
13.
Biomolecules ; 11(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827678

RESUMO

In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Doenças Cardiovasculares , Humanos
14.
J Appl Physiol (1985) ; 130(1): 193-205, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090911

RESUMO

Muscle glycogen use and glucose uptake during cold exposure increases with shivering intensity. We hypothesized that cold exposure, with shivering, would subsequently increase glucose tolerance. Fifteen healthy men (age = 26 ± 5 yr, body mass index = 23.9 ± 2.5 kg·m-2 ) completed two experimental trials after an overnight fast. Cold exposure (10°C) was applied during the first trial, via a water-perfused suit, to induce at least 1 h of shivering in each participant. For comparison, a thermoneutral (32°C) condition was applied during the second trial, under identical conditions, for the same duration as determined during the cold exposure. After the thermal exposures, participants rested under a duvet for 90 min, which was followed by a 3-h oral glucose tolerance test. Skin temperature (means ± SE) decreased at the end of the cold exposure compared with that before (26.9 ± 0.3 vs. 33.7 ± 0.1°C, P < 0.001). Total energy expenditure during the 1 h of shivering was greater than that during the time-matched thermoneutral condition (619 ± 23 vs. 309 ± 7 kJ, P < 0.001). Cold exposure increased the areas under the glucose and insulin curves by 4.8% (P = 0.066) and 24% (P = 0.112), respectively. The Matsuda and insulin-glucose indices changed after cold exposure by -21% (P = 0.125) and 30% (P = 0.100), respectively. Cold exposure did not subsequently increase glucose tolerance. Instead, the Matsuda and insulin-glucose indices suggest insulin resistance post shivering.NEW & NOTEWORTHY This is the first study to examine the effect of cold-induced shivering on subsequent glucose tolerance determined under thermoneutral conditions. Plasma glucose and insulin concentrations increased during the oral glucose tolerance test post shivering. Additionally, insulin sensitivity indices suggest insulin resistance following cold exposure. These results provide evidence for an acute post-shivering response, whereby glucose metabolism has deteriorated, contrary to the results from earlier studies on cold acclimation.


Assuntos
Estremecimento , Termogênese , Adulto , Regulação da Temperatura Corporal , Temperatura Baixa , Glucose , Humanos , Masculino , Temperatura Cutânea , Adulto Jovem
15.
Nat Metab ; 3(1): 107-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462512

RESUMO

Creatine availability in adipose tissue has been shown to have profound effects on thermogenesis and energy balance in mice. However, whether dietary creatine supplementation affects brown adipose tissue (BAT) activation in humans is unclear. In the present study, we report the results of a double-blind, randomized, placebo-controlled, cross-over trial (NCT04086381) in which 14 young, healthy, vegetarian adults, who are characterized by low creatine levels, received 20 g of creatine monohydrate per day or placebo. Participants were eligible if they met the following criteria: male or female, white, aged 18-30 years, consuming a vegetarian diet (≥6 months) and body mass index 20-25 kg m-2. BAT activation after acute cold exposure was determined by calculating standard uptake values (SUVs) acquired by [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. BAT volume (-31.32 (19.32) SUV (95% confidence interval (CI) -73.06, 10.42; P = 0.129)), SUVmean (-0.34 (0.29) SUV (95% CI -0.97, 0.28; P = 0.254)) and SUVmax (-2.49 (2.64) SUV (95% CI -8.20, 3.21; P = 0.362)) following acute cold exposure were similar between placebo and creatine supplementation. No side effects of creatine supplementation were reported; one participant experienced bowel complaints during placebo, which resolved without intervention. Our data show that creatine monohydrate supplementation in young, healthy, lean, vegetarian adults does not enhance BAT activation after acute cold exposure.


Assuntos
Tecido Adiposo Marrom/metabolismo , Creatina/farmacologia , Vegetarianos , Tecido Adiposo Marrom/efeitos dos fármacos , Adolescente , Adulto , Composição Corporal , Índice de Massa Corporal , Temperatura Baixa , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Adulto Jovem
17.
Am J Clin Nutr ; 112(2): 413-426, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320006

RESUMO

BACKGROUND: Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. OBJECTIVES: We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. METHODS: A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. RESULTS: Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. CONCLUSIONS: NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.


Assuntos
Acetilcarnitina/metabolismo , Composição Corporal/efeitos dos fármacos , Músculo Esquelético/metabolismo , Niacinamida/análogos & derivados , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Idoso , Suplementos Nutricionais/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , NAD/biossíntese , Niacinamida/administração & dosagem , Obesidade/metabolismo , Obesidade/fisiopatologia , Sobrepeso/metabolismo , Sobrepeso/fisiopatologia , Compostos de Piridínio
18.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 741-748, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261288

RESUMO

The etiology of metabolic disease in humans is far from understood, and even though potential pathways are identified in animal models and cell studies, it is often difficult to determine their relevance in humans, as the possibilities of tissue sampling are limited. The application of non-invasive imaging techniques can provide essential metabolic information and this mini review focuses on the opportunities of Magnetic Resonance Spectroscopy (MRS) to add to our understanding of the metabolic processes during health and disease. MRS is a volatile technique that can give us information about the concentrations of endogenous metabolites in a completely non-invasive way. In this mini review we discuss the opportunities that MRS is giving us by describing how the investigation of ectopic fat depots has gained a lot of attention and has really taken off after 1H-MRS for quantification of lipid content became widely available. We furthermore discuss how other MRS techniques, such as 31P-MRS and 13C-MRS can add valuable information and especially highlight the strength of MRS to be applied dynamically and therefore monitor metabolic changes during physiological challenges such as exercise or meal tests.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Doenças Metabólicas/metabolismo , Metabolômica/métodos , Metabolismo Energético , Exercício Físico , Humanos , Doenças Metabólicas/fisiopatologia
19.
J Appl Physiol (1985) ; 124(1): 168-181, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473616

RESUMO

In this review, current imaging techniques and their future perspectives in the field of cardiac metabolic imaging in humans are discussed. This includes a range of noninvasive imaging techniques, allowing a detailed investigation of cardiac metabolism in health and disease. The main imaging modalities discussed are magnetic resonance spectroscopy techniques for determination of metabolite content (triglycerides, glucose, ATP, phosphocreatine, and so on), MRI for myocardial perfusion, and single-photon emission computed tomography and positron emission tomography for quantitation of perfusion and substrate uptake.


Assuntos
Técnicas de Imagem Cardíaca , Miocárdio/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética
20.
Dis Markers ; 2018: 2908609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581794

RESUMO

Glioblastoma is the most aggressive adult primary brain tumor which is incurable despite intensive multimodal treatment. Inter- and intratumoral heterogeneity poses one of the biggest barriers in the diagnosis and treatment of glioblastoma, causing differences in treatment response and outcome. Noninvasive prognostic and predictive tests are highly needed to complement the current armamentarium. Noninvasive testing of glioblastoma uses multiple techniques that can capture the heterogeneity of glioblastoma. This set of diagnostic approaches comprises advanced MRI techniques, nuclear imaging, liquid biopsy, and new integrated approaches including radiogenomics and radiomics. New treatment options such as agents targeted at driver oncogenes and immunotherapy are currently being developed, but benefit for glioblastoma patients still has to be demonstrated. Understanding and unraveling tumor heterogeneity and microenvironment can help to create a treatment regime that is patient-tailored to these specific tumor characteristics. Improved noninvasive tests are crucial to this success. This review discusses multiple diagnostic approaches and their effect on predicting and monitoring treatment response in glioblastoma.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Terapia de Alvo Molecular/métodos , Imagem Multimodal/métodos , Neuroimagem/métodos , Biópsia/métodos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Imageamento por Ressonância Magnética/métodos , Medicina de Precisão , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA