Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Antimicrob Agents Chemother ; 67(11): e0079123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37850746

RESUMO

A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C ß-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.


Assuntos
Ceftazidima , Cefalosporinase , Ceftazidima/farmacologia , Cefalosporinase/metabolismo , Pseudomonas/genética , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo , Engenharia de Proteínas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Compostos Azabicíclicos/farmacologia , Pseudomonas aeruginosa/metabolismo , Combinação de Medicamentos
2.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602311

RESUMO

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Assuntos
Triazóis , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Penicilinas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Antimicrob Agents Chemother ; 66(4): e0212421, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35311523

RESUMO

ß-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent ß-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC ß-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.


Assuntos
Ceftazidima , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Combinação de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imipenem/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Espectroscopia de Ressonância Magnética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Biochemistry ; 60(14): 1133-1144, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33749238

RESUMO

The soluble lytic transglycosylase Cj0843c from Campylobacter jejuni breaks down cell-wall peptidoglycan (PG). Its nonhydrolytic activity sustains cell-wall remodeling and repair. We report herein our structure-function studies probing the substrate preferences and recognition by this enzyme. Our studies show that Cj0843c exhibits both exolytic and endolytic activities and forms the N-acetyl-1,6-anhydromuramyl (anhMurNAc) peptidoglycan termini, the typical transformation catalyzed by lytic transglycosylase. Cj0843c shows a trend toward a preference for substrates with anhMurNAc ends and those with peptide stems. Mutagenesis revealed that the catalytic E390 is critical for activity. In addition, mutagenesis showed that R388 and K505, located in the positively charged pocket near E390, also serve important roles. Mutation of R326, on the opposite side of this positively charged pocket, enhanced activity. Our data point to different roles for positively charged residues in this pocket for productive binding of the predominantly negatively charged PG. We also show by X-ray crystallography and by molecular dynamics simulations that the active site of Cj0843c is still capable of binding GlcNAc containing di- and trisaccharides without MurNAc moieties, without peptide stems, and without the anhMurNAc ends.


Assuntos
Campylobacter jejuni/enzimologia , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Simulação de Dinâmica Molecular , Mutagênese , Conformação Proteica
5.
J Biol Chem ; 294(5): 1568-1578, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538128

RESUMO

Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127Aversus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.


Assuntos
Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Oxirredutases/química , Proteólise , Proteômica , Especificidade por Substrato
6.
Hum Mol Genet ; 27(11): 1913-1926, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566152

RESUMO

Primary ovarian insufficiency (POI) is characterized by amenorrhea and loss or dysfunction of ovarian follicles prior to the age of 40. POI has been associated with autosomal recessive mutations in genes involving hormonal signaling and folliculogenesis, however, the genetic etiology of POI most often remains unknown. Here we report MRPS22 homozygous missense variants c.404G>A (p.R135Q) and c.605G>A (p.R202H) identified in four females from two independent consanguineous families as a novel genetic cause of POI in adolescents. Both missense mutations identified in MRPS22 are rare, occurred in highly evolutionarily conserved residues, and are predicted to be deleterious to protein function. In contrast to prior reports of mutations in MRPS22 associated with severe mitochondrial disease, the POI phenotype is far less severe. Consistent with this genotype-phenotype correlation, mitochondrial defects in oxidative phosphorylation or rRNA levels were not detected in fibroblasts derived from the POI patients, suggesting a non-bioenergetic or tissue-specific mitochondrial defect. Furthermore, we demonstrate in a Drosophila model that mRpS22 deficiency specifically in somatic cells of the ovary had no effect on fertility, whereas flies with mRpS22 deficiency specifically in germ cells were infertile and agametic, demonstrating a cell autonomous requirement for mRpS22 in germ cell development. These findings collectively identify that MRPS22, a component of the small mitochondrial ribosome subunit, is critical for ovarian development and may therefore provide insight into the pathophysiology and treatment of ovarian dysfunction.


Assuntos
Proteínas de Drosophila/genética , Fertilidade/genética , Proteínas Mitocondriais/genética , Insuficiência Ovariana Primária/genética , Proteínas Ribossômicas/genética , Adolescente , Adulto , Amenorreia/genética , Amenorreia/patologia , Animais , Modelos Animais de Doenças , Drosophila/genética , Feminino , Fertilidade/fisiologia , Homozigoto , Humanos , Menopausa Precoce/genética , Mutação de Sentido Incorreto/genética , Folículo Ovariano/patologia , Insuficiência Ovariana Primária/patologia , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-32152075

RESUMO

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of ß-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/metabolismo , Sítios de Ligação/fisiologia , Domínio Catalítico/efeitos dos fármacos , Cefalosporinas/farmacologia , Cristalografia por Raios X , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Ligação Proteica
8.
Artigo em Inglês | MEDLINE | ID: mdl-31712217

RESUMO

Unlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) ß-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.


Assuntos
Proteínas de Bactérias/classificação , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Mutação , Terminologia como Assunto , Resistência beta-Lactâmica/genética , beta-Lactamases/classificação , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Cooperação Internacional , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacologia
9.
Antimicrob Agents Chemother ; 60(3): 1760-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729491

RESUMO

Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to ß-lactamases emerges in part via the expression of KPC-2 and SHV-1 ß-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this ß-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new ß-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 ß-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 ß-lactamase complex. S02030 is able to inhibit vastly different serine ß-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the ß-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C-H…O 2.9-Å hydrogen bond with S130 in KPC-2.


Assuntos
Ácidos Borônicos/química , Klebsiella pneumoniae/enzimologia , Triazóis/química , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/química , Ácidos Borônicos/metabolismo , Carbapenêmicos/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cefalosporinas/metabolismo , Cristalografia por Raios X , Klebsiella pneumoniae/efeitos dos fármacos , Estrutura Terciária de Proteína , Tiofenos/química , Triazóis/metabolismo , beta-Lactamases/metabolismo
10.
Biochemistry ; 54(3): 734-43, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25536850

RESUMO

For the class A ß-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6ß position by a CH2OH group (6ß-(hydroxymethyl)penicillanic acid). The 6ß substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a ß-aminoacrylate) in 1 h for sulbactam and in 4 h for 6ß-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6ß-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6ß-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6ß-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.


Assuntos
Iminas/metabolismo , Sulbactam/análogos & derivados , beta-Lactamases/metabolismo , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Distribuição Normal , Soluções , Análise Espectral Raman , Sulbactam/química , Sulbactam/metabolismo , Sulbactam/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
11.
Biochemistry ; 52(20): 3601-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614626

RESUMO

The soluble guanylyl cyclase (sGC) is an important receptor for nitric oxide (NO). Nitric oxide activates sGC several hundred fold to generate cGMP from GTP. Because of sGC's salutary roles in cardiovascular physiology, it has received substantial attention as a drug target. The heme domain of sGC is key to its regulation as it not only contains the NO activation site but also harbors sites for NO-independent sGC activators as well an S-nitrosylation site (ß1 C122) involved in desensitization. Here we report the crystal structure of the activator BAY 60-2770 bound to the Nostoc H-NOX domain that is homologous to sGC. The structure reveals that BAY 60-2770 has displaced the heme and acts as a heme mimetic via carboxylate-mediated interactions with the conserved YxSxR motif as well as hydrophobic interactions. Comparisons with the previously determined BAY 58-2667 bound structure reveal that BAY 60-2770 is more ordered in its hydrophobic tail region. sGC activity assays demonstrate that BAY 60-2770 has about 10% higher fold maximal stimulation compared to BAY 58-2667. S-Nitrosylation of the BAY 60-2770 substituted Nostoc H-NOX domain causes subtle changes in the vicinity of the S-nitrosylated C122 residue. These shifts could impact the adjacent YxSxR motif and αF helix and as such potentially inhibit either heme incorporation or NO-activation of sGC and thus provide a structural basis for desensitization.


Assuntos
Proteínas de Bactérias/química , Benzoatos/química , Compostos de Bifenilo/química , Guanilato Ciclase/química , Hidrocarbonetos Fluorados/química , Nostoc/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Proteínas de Bactérias/metabolismo , Benzoatos/metabolismo , Compostos de Bifenilo/metabolismo , Cristalografia por Raios X , Guanilato Ciclase/metabolismo , Hidrocarbonetos Fluorados/metabolismo , Modelos Moleculares , Óxido Nítrico/metabolismo , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Guanilil Ciclase Solúvel
12.
J Am Chem Soc ; 135(49): 18358-69, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24219313

RESUMO

The inhibition of the class A SHV-1 ß-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the ß-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the ß-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 ß-lactamases.


Assuntos
Cefalosporinas/farmacologia , Sulfonas/química , Inibidores de beta-Lactamases , Sequência de Bases , Cefalosporinas/química , Cristalografia por Raios X , Primers do DNA , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray
13.
Protein Sci ; 32(7): e4683, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209283

RESUMO

Bacterial lytic transglycosylases (LTs) contribute to peptidoglycan cell wall metabolism and are potential drug targets to potentiate ß-lactam antibiotics to overcome antibiotic resistance. Since LT inhibitor development is underexplored, we probed 15 N-acetyl-containing heterocycles in a structure-guided fashion for their ability to inhibit and bind to the Campylobacter jejuni LT Cj0843c. Ten GlcNAc analogs were synthesized with substitutions at the C1 position, with two having an additional modification at the C4 or C6 position. Most of the compounds showed weak inhibition of Cj0843c activity. Compounds with alterations at the C4 position, replacing the -OH with a -NH2 , and C6 position, the addition of a -CH3 , yielded improved inhibitory efficacy. All 10 GlcNAc analogs were crystallographically analyzed via soaking experiments using Cj0843c crystals and found to bind to the +1 +2 saccharide subsites with one of them additionally binding to the -2 -1 subsite region. We also probed other N-acetyl-containing heterocycles and found that sialidase inhibitors N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B inhibited Cj0843c weakly and crystallographically bound to the -2 -1 subsites. Analogs of the former also showed inhibition and crystallographic binding and included zanamivir amine. This latter set of heterocycles positioned their N-acetyl group in the -2 subsite with additional moieties interacting in the -1 subsite. Overall, these results could provide novel opportunities for LT inhibition via exploring different subsites and novel scaffolds. The results also increased our mechanistic understanding of Cj0843c regarding peptidoglycan GlcNAc subsite binding preferences and ligand-dependent modulation of the protonation state of the catalytic E390.


Assuntos
Campylobacter jejuni , Peptidoglicano , Peptidoglicano/metabolismo , Campylobacter jejuni/metabolismo , Glicosiltransferases/química , Ligação Proteica
14.
J Med Chem ; 66(8): 5657-5668, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37027003

RESUMO

Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.


Assuntos
Injúria Renal Aguda , Oxirredutases , Camundongos , Animais , Oxirredutases/metabolismo , Coenzima A/metabolismo , Rim/metabolismo
15.
J Am Chem Soc ; 134(40): 16798-804, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22974281

RESUMO

The rise of inhibitor-resistant and other ß-lactamase variants is generating an interest in developing new ß-lactamase inhibitors to complement currently available antibiotics. To gain insight into the chemistry of inhibitor recognition, we determined the crystal structure of the inhibitor preacylation complex of sulbactam, a clinical ß-lactamase inhibitor, bound in the active site of the S70C variant of SHV-1 ß-lactamase, a resistance enzyme that is normally present in Klebsiella pneumoniae. The S70C mutation was designed to affect the reactivity of that catalytic residue to allow for capture of the preacylation complex. Unexpectedly, the 1.45 Å resolution inhibitor complex structure revealed that residue C70 is involved in a sulfenamide bond with K73. Such a covalent bond is not present in the wild-type SHV-1 or in an apo S70C structure also determined in this study. This bond likely contributed significantly to obtaining the preacylation complex with sulbactam due to further decreased reactivity toward substrates. The intact sulbactam is positioned in the active site such that its carboxyl moiety interacts with R244, S130, and T235 and its carbonyl moiety is situated in the oxyanion hole. To our knowledge, in addition to being the first preacylation inhibitor ß-lactamase complex, this is also the first observation of a sulfenamide bond between a cysteine and lysine in an active site. Not only could our results aid, therefore, structure-based inhibitor design efforts in class A ß-lactamases, but the sulfenamide-bond forming approach to yield preacylation complexes could also be applied to other classes of ß-lactamases and penicillin-binding proteins with the SXXK motif.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Klebsiella pneumoniae/enzimologia , Sulbactam/química , Sulbactam/farmacologia , Inibidores de beta-Lactamases , beta-Lactamases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Modelos Moleculares , Mutação Puntual , beta-Lactamases/química , beta-Lactamases/genética
16.
Antimicrob Agents Chemother ; 56(5): 2713-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22330909

RESUMO

Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by ß-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two ß-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-Å resolution. 3-NPBA demonstrated a K(m) value of 1.0 ± 0.1 µM (mean ± standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-Å resolution. PSR-3-226 displayed a K(m) value of 3.8 ± 0.4 µM for KPC-2, and the inactivation rate constant (k(inact)) was 0.034 ± 0.003 s(-1). When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first ß-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.


Assuntos
Antibacterianos/química , Ácidos Borônicos/química , Carbapenêmicos/química , Compostos Heterocíclicos com 2 Anéis/química , Klebsiella pneumoniae/enzimologia , Sulfonas/química , Tiazolidinas/química , beta-Lactamases/química , Antibacterianos/metabolismo , Carbapenêmicos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Compostos Heterocíclicos com 2 Anéis/metabolismo , Cinética , Modelos Moleculares , Tiazolidinas/metabolismo , Resistência beta-Lactâmica/fisiologia , Inibidores de beta-Lactamases , beta-Lactamases/metabolismo
17.
Biochemistry ; 50(20): 4291-7, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21491881

RESUMO

Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the ß subunit of sGC. Still, it is unknown how the breakage of the iron-His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue aspartate 102 (D102) with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies D102 as having a key role in NO activation following breakage of the iron-His bond.


Assuntos
Ácido Aspártico/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Heme/química , Heme/metabolismo , Óxido Nítrico/farmacologia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Alanina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Guanilato Ciclase/genética , Indazóis/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Homologia de Sequência de Aminoácidos , Guanilil Ciclase Solúvel
18.
J Biol Chem ; 285(29): 22651-7, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20463019

RESUMO

Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58-2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58-2667. The 2.3-A resolution structure of BAY 58-2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58-2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58-2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58-2667 binding causes a rotation of the alphaF helix away from the heme pocket, as this helix is normally held in place via the inhibitory His(105)-heme covalent bond. The structure provides insights into how BAY 58-2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases.


Assuntos
Benzoatos/química , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Heme/química , Mimetismo Molecular , Óxido Nítrico/química , Nostoc/enzimologia , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Ativadores de Enzimas/química , Modelos Moleculares , Mutagênese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Guanilil Ciclase Solúvel , Relação Estrutura-Atividade
19.
Antimicrob Agents Chemother ; 55(1): 174-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041505

RESUMO

Boronic acid transition state inhibitors (BATSIs) are potent class A and C ß-lactamase inactivators and are of particular interest due to their reversible nature mimicking the transition state. Here, we present structural and kinetic data describing the inhibition of the SHV-1 ß-lactamase, a clinically important enzyme found in Klebsiella pneumoniae, by BATSI compounds possessing the R1 side chains of ceftazidime and cefoperazone and designed variants of the latter, compounds 1 and 2. The ceftazidime and cefoperazone BATSI compounds inhibit the SHV-1 ß-lactamase with micromolar affinity that is considerably weaker than their inhibition of other ß-lactamases. The solved crystal structures of these two BATSIs in complex with SHV-1 reveal a possible reason for SHV-1's relative resistance to inhibition, as the BATSIs adopt a deacylation transition state conformation compared to the usual acylation transition state conformation when complexed to other ß-lactamases. Active-site comparison suggests that these conformational differences might be attributed to a subtle shift of residue A237 in SHV-1. The ceftazidime BATSI structure revealed that the carboxyl-dimethyl moiety is positioned in SHV-1's carboxyl binding pocket. In contrast, the cefoperazone BATSI has its R1 group pointing away from the active site such that its phenol moiety moves residue Y105 from the active site via end-on stacking interactions. To work toward improving the affinity of the cefoperazone BATSI, we synthesized two variants in which either one or two extra carbons were added to the phenol linker. Both variants yielded improved affinity against SHV-1, possibly as a consequence of releasing the strain of its interaction with the unusual Y105 conformation.


Assuntos
Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Klebsiella pneumoniae/enzimologia , Inibidores de beta-Lactamases , Cefoperazona/química , Cefoperazona/farmacologia , Ceftazidima/química , Ceftazidima/farmacologia , Ácido Clavulânico/química , Ácido Clavulânico/farmacologia , Espectroscopia de Ressonância Magnética , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/química , Ácido Penicilânico/farmacologia , Sulbactam/química , Sulbactam/farmacologia , Tazobactam
20.
Antimicrob Agents Chemother ; 55(5): 2303-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357298

RESUMO

Among Gram-negative bacteria, resistance to ß-lactams is mediated primarily by ß-lactamases (EC 3.2.6.5), periplasmic enzymes that inactivate ß-lactam antibiotics. Substitutions at critical amino acid positions in the class A ß-lactamase families result in enzymes that can hydrolyze extended-spectrum cephalosporins, thus demonstrating an "extended-spectrum" ß-lactamase (ESBL) phenotype. Using SHV ESBLs with substitutions in the Ω loop (R164H and R164S) as target enzymes to understand this enhanced biochemical capability and to serve as a basis for novel ß-lactamase inhibitor development, we determined the spectra of activity and crystal structures of these variants. We also studied the inactivation of the R164H and R164S mutants with tazobactam and SA2-13, a unique ß-lactamase inhibitor that undergoes a distinctive reaction chemistry in the active site. We noted that the reduced Ki values for the R164H and R164S mutants with SA2-13 are comparable to those with tazobactam (submicromolar). The apo enzyme crystal structures of the R164H and R164S SHV variants revealed an ordered Ω loop architecture that became disordered when SA2-13 was bound. Important structural alterations that result from the binding of SA2-13 explain the enhanced susceptibility of these ESBL enzymes to this inhibitor and highlight ligand-dependent Ω loop flexibility as a mechanism for accommodating and hydrolyzing ß-lactam substrates.


Assuntos
beta-Lactamases/química , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estrutura Molecular , Mutagênese Sítio-Dirigida , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/metabolismo , Tazobactam , Difração de Raios X , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA