RESUMO
This study tested the hypothesis that in human aging, a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance, and altered mitochondrial function. We used a cross-sectional study design with well-matched fit and (pre-)frail old males and females, using young males and females as healthy controls. Frailty was assessed according to the Fried criteria and physical performance was determined by 400 m walk test, short physical performance battery and handgrip strength. Muscle and plasma acylcarnitine status, and muscle mitochondrial gene expression was analyzed. Results showed that intramuscular total carnitine levels and short-chain acylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular short-chain acylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. It is, therefore, concluded that in (pre-)frail old females, intramuscular total carnitine levels and short-chain acylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in aging research.
Assuntos
Envelhecimento/fisiologia , Carnitina/análogos & derivados , Fragilidade/fisiopatologia , Força da Mão/fisiologia , Músculos/metabolismo , Aptidão Física/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Carnitina/sangue , Carnitina/química , Carnitina/metabolismo , Estudos Transversais , Feminino , Idoso Fragilizado , Fragilidade/metabolismo , Humanos , Masculino , Fatores Sexuais , Caminhada/fisiologiaRESUMO
Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensive phylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
Assuntos
Carnitina O-Palmitoiltransferase/genética , Evolução Molecular , Mitocôndrias/enzimologia , Filogenia , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Colina/metabolismo , Drosophila/enzimologia , Drosophila/genética , Éxons/genética , Íntrons/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Leveduras/enzimologia , Leveduras/genéticaRESUMO
Sex differences in muscle aging are poorly understood, but could be crucial for the optimization of sarcopenia-related interventions. To gain insight into potential sex differences in muscle aging, we recruited young (23 ± 2 years, 13 males and 13 females) and old (80 ± 3.5 years, 28 males and 26 females) participants. Males and females in both groups were highly matched, and vastus lateralis muscle parameters of old versus young participants were compared for each sex separately, focusing on gene expression. The overall gene expression profiles separated the sexes, but similar gene expression patterns separated old from young participants in males and females. Genes were indeed regulated in the same direction in both sexes during aging; however, the magnitude of differential expression was sex specific. In males, oxidative phosphorylation was the top-ranked differentially expressed process, and in females, this was cell growth mediated by AKT signaling. Findings from RNA-seq data were studied in greater detail using alternative approaches. In addition, we confirmed our data using publicly available data from three independent human studies. In conclusion, top-ranked pathways differ between males and females, but were present and altered in the same direction in both sexes. We conclude that the same processes are associated with skeletal muscle aging in males and females, but the differential expression of those processes in old vs. young participants is sex specific.
Assuntos
Sarcopenia , Caracteres Sexuais , Humanos , Masculino , Feminino , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia , Sarcopenia/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Physical weakness is a key component of frailty, and is highly prevalent in older adults. While females have a higher prevalence and earlier onset, sex differences in the development of frailty-related physical weakness are hardly studied. Therefore, we investigated the intramuscular changes that differentiate between fit and weak older adults for each sex separately. METHODS: Male (n = 28) and female (n = 26) older adults (75 + years) were grouped on the basis of their ranks according to three frailty-related physical performance criteria. Muscle biopsies taken from vastus lateralis muscle were used for transcriptome and histological examination. Pairwise comparisons were made between the fittest and weakest groups for each sex separately, and potential sex-specific effects were assessed. RESULTS: Weak females were characterized by a higher expression of inflammatory pathways and infiltration of NOX2-expressing immune cells, concomitant with a higher VCAM1 expression. Weak males were characterized by a smaller diameter of type 2 (fast) myofibers and lower expression of PRKN. In addition, weakness-associated transcriptome changes in the muscle were distinct from aging, suggesting that the pathophysiology of frailty-associated physical weakness does not necessarily depend on aging. CONCLUSIONS: We conclude that physical weakness-associated changes in muscle are sex-specific and recommend that sex differences are taken into account in research on frailty, as these differences may have a large impact on the development of (pharmaceutical) interventions against frailty. TRIAL REGISTRATION NUMBER: The FITAAL study was registered in the Dutch Trial Register, with registration code NTR6124 on 14-11-2016 ( https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6124 ). HIGHLIGHTS: ⢠In female, but not male older adults, physical weakness was associated with a higher expression of intramuscular markers for inflammation. ⢠In male, but not female older adults, physical weakness was associated with a smaller diameter of type 2 (fast) myofibers and lower PRKN expression. ⢠Fit older adults (of both sexes) maintained expression levels comparable to young participants of weakness related genes, differing from frail participants.
Assuntos
Fragilidade , Feminino , Humanos , Masculino , Idoso , Caracteres Sexuais , Envelhecimento , Etnicidade , InflamaçãoRESUMO
Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.
Assuntos
Acil Coenzima A/metabolismo , Envelhecimento/fisiologia , Histonas/metabolismo , Fibras Musculares Esqueléticas/enzimologia , Acetilcoenzima A/metabolismo , Acilação/fisiologia , Diferenciação Celular , Linhagem Celular , Histona Acetiltransferases/metabolismo , Humanos , Proteína MyoD/metabolismo , Propionatos/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
Cognitive impairment is a leading cause of dysfunction in the elderly. When mild cognitive impairment (MCI) occurs in elderly, it is frequently a prodromal condition to dementia. The Montreal Cognitive Assessment (MoCA) is a commonly used tool to screen for MCI. However, this test requires a face-to-face administration and is composed of an assortment of questions whose responses are added together by the rater to provide a score whose precise meaning has been controversial. This study was designed to evaluate the performance of a computerized memory test (MemTrax), which is an adaptation of a continuous recognition task, with respect to the MoCA. Two outcome measures are generated from the MemTrax test: MemTraxspeed and MemTraxcorrect. Subjects were administered the MoCA and the MemTrax test. Based on the results of the MoCA, subjects were divided in two groups of cognitive status: normal cognition (n = 45) and MCI (n = 37). Mean MemTrax scores were significantly lower in the MCI than in the normal cognition group. All MemTrax outcome variables were positively associated with the MoCA. Two methods, computing the average MTX score and linear regression were used to estimate the cutoff values of the MemTrax test to detect MCI. These methods showed that for the outcome MemTraxspeed a score below the range of 0.87 - 91 s-1 is an indication of MCI, and for the outcome MemTraxcorrect a score below the range of 85 - 90% is an indication for MCI.